Basic and clinical aspects of glucocorticoid action in bone

2020 ◽  
pp. 915-940
Author(s):  
Hong Zhou ◽  
Mark S. Cooper ◽  
Markus J. Seibel
2005 ◽  
Vol 133 (Suppl. 1) ◽  
pp. 61-66 ◽  
Author(s):  
Nevena Ribarac-Stepic ◽  
Snezana Djurica ◽  
Zorica Zakula ◽  
Goran Koricanac ◽  
Dragoslav Milosevic

Glucocorticoid hormones are involved in regulation of cell processes and coordinate physiological response to diverse signals. These hormones, through interaction with specific intracellular receptors, coordinate components of physiological repertoires by activating the expression of gene networks. Thus hormone-receptor complexes may function as key constituent in regulation of specific cell functions as well as in provoking differentiation in already determined cells. Analysis of steroid receptors are important for understanding of molecular details of transcriptional control as well as providing the insight as to how an individual transcriptional factor such as glucocorticoid receptor, contributes to cell identity and function. The purpose of this review is to establish the general molecular mechanism of glucocorticoid action and mechanism associated hormonereceptor complexes with the control of differential patterns (i.e. ?positive? and ?negative?) of gene expression. One of the examples of two signal pathways regulating opposite gene expression are NF-?B and GR-mediated signal pathways. These pathways have important and opposite roles in the immune function. NF-?B is transcription factor which induces the expression of many genes that participate in immune and inflamatory response, while GR is transcription factor that serves as antiinflammatory agent and immune suppressor. Their interactions within the cell, although not yet completely understood, appear to be an important, possibly even the primary mechanism of immune homeostasis. It has not been established that glucocorticoid sensitivity can be caused by mechanisms other than changes of GR number and properties, although recent studies have indicated that receptor isoforms and transcriptional factors may modulate glucocorticoid responsiveness by interacting with receptor protein or directly at the site of DNA binding. The aim of this review is also to describe the role of glucocorticoid receptors in mechanism of glucocorticoid action on cell functions, including immune responses, as well as to present emerging issues on clinical aspects of molecular mechanisms of glucocorticoid action.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


1965 ◽  
Vol 48 (6) ◽  
pp. 790-804 ◽  
Author(s):  
Carroll M. Leevy

Praxis ◽  
2020 ◽  
Vol 109 (14) ◽  
pp. 1141-1149
Author(s):  
Martina Boscolo Berto ◽  
Dominik C. Benz ◽  
Christoph Gräni

Abstract. Coronary artery disease (CAD) is the leading cause of morbidity and mortality in the industrialized countries. Assessment of symptomatic patients with suspected obstructive CAD is a common reason for a clinical visit. Noninvasive anatomical and functional imaging are established tools to rule-in and rule-out CAD, to assess the severity of disease and to determine the potential risk of future cardiovascular events. In this review, we discuss the updated Guidelines from the European Society of Cardiology on Chronic Coronary Syndromes and explore the different imaging modalities used in current clinical practice for the noninvasive assessment of CAD. The pros and cons of each method, especially comparing anatomical and functional testing, are presented. Furthermore we we address the practical clinical aspects in the selection of the optimal noninvasive tests according to clinical need.


Sign in / Sign up

Export Citation Format

Share Document