Differential Interference Contrast (DIC) Microscopy

2019 ◽  
pp. 297-307
Author(s):  
Randy Wayne
2020 ◽  
Vol 70 (2) ◽  
pp. 226-231
Author(s):  
Qingzheng Cheng ◽  
Chengfeng Zhou ◽  
Yuanfeng Pan ◽  
Brian Via

Abstract Encapsulation of cellulose with wax and surfactant is a physical way to restrict cellulose-to-cellulose attraction. Because wax is often used in the wood composite process, industrial manufacturers would not have to upgrade or add expensive equipment to handle cellulose addition. The encapsulated cellulose particles could easily be transported to composite and polymer facilities and blended in a homogeneous fashion for a multitude of products and composites. It was the objective of this study to utilize differential interference contrast (DIC) microscopy to characterize the wax and surfactant coverage and encapsulation morphology of the wax–surfactant–cellulose composite. The lengths and widths of the cellulose particles were significantly changed after encapsulation. DIC microscopy found that we could fine-tune wax coverage to control homogeneity and reduce fiber bundling during dispersion. It was found that surfactants were not necessary to enhance coverage if a 1:4 ratio of wax to microcrystalline cellulose was used. However, if more wax is desired, then surfactants may be necessary to suppress fiber bundles during dispersion.


1998 ◽  
Vol 4 (S2) ◽  
pp. 130-131
Author(s):  
N. Stromgren Allen ◽  
D. Moxley ◽  
D. Collings ◽  
G. Holzwarth

Differential interference contrast (DIC) light microscopy, particularly when coupled with digital image processing, is a powerful tool for the high-resolution microscopy of unstained, transparent biological specimens and can equally well be applied to semiconductor measurements. We show analytically, and with images of diatoms, plant cells and protoplasts, that switching the polarization of the incident light by 90 degrees, changes the image highlights found in conventional DIC images into shadows and vice versa (1). Using a ferroelectric liquid-crystal modulator, this switching can be done at frame rates, synchronized to the camera. By subtracting alternate frames, a stream of difference DIC images is created. We call this technique Pol Mod DIC. Subtraction of alternate images is carried out efficiently by frame buffer operations and amounts to massively parallel synchronous detection. A similar method has been applied to confocal microscopy (2).


RSC Advances ◽  
2020 ◽  
Vol 10 (50) ◽  
pp. 29868-29872
Author(s):  
Geun Wan Kim ◽  
Seokyoung Yoon ◽  
Jung Heon Lee ◽  
Ji Won Ha

Spherical AuNRs@mSiO2 have randomly oriented AuNR cores in 3D space, which could be resolved on the same focal plane by interference-based DIC microscopy.


2000 ◽  
Vol 39 (02) ◽  
pp. 105-109 ◽  
Author(s):  
F. Lanni ◽  
T. Kanade ◽  
F. Kagalwala

Abstract:Differential Interference Contrast (DIC) microscopy is a powerful visualization tool used to study live biological cells. Its use, however, has been limited to qualitative observations. The inherent non-linear relation between the object properties and the image intensity makes quantitative analysis difficult. As a first step towards measuring optical properties of objects from DIC images, we develop a model for the image formation process using methods consistent with energy conservation laws. We verify our model by comparing real image data of manufactured specimens to simulated images of virtual objects. As the next step, we plan to use this model to reconstruct the three-dimensional properties of unknown specimens.


1977 ◽  
Vol 27 (1) ◽  
pp. 47-56
Author(s):  
R. Hard ◽  
R.D. Allen

A laser light source along with a new method of preparing endosperm cells of Haemanthus katherinae for differential interference contrast (DIC) microscopy has led to increased visibility of kinetochore fibres. Little information is available concerning the behaviour of these fibres during anaphase in living cells. In metaphase, kinetochore fibres are seen as distinct bundles of microtubules, here referred to as ‘filaments’, extending from the kinetochore to the ‘diffuse’ pole. They possess an apparent globular substructure which corresponds to the moving ‘particles or states’ described previously from cine films. In early anaphase, the filaments of each kinetochore fibre lose their parallel orientation characteristic of metaphase and splay out so that the more peripheral filaments intermingle with those of other kinetochore fibres. This process begins at the poles and proceeds as a wave toward the kinetochores as chromosomal movement progresses. This behaviour has been examined in relation to a number of proposed models for the mechanism of chromosome movement and has been found to place some constraints on some models but to be consistent with any model that hypothesizes that chromosomes move as a consequence of cumulative cohesive lateral interactions of microtubules.


Sign in / Sign up

Export Citation Format

Share Document