Water masses, circulation and change in the modern Southern Ocean

2022 ◽  
pp. 165-197
Author(s):  
Lionel Carter ◽  
Helen Bostock-Lyman ◽  
Melissa Bowen
Keyword(s):  
2006 ◽  
Vol 63 (1-2) ◽  
pp. 20-34 ◽  
Author(s):  
N. Anilkumar ◽  
Alvarinho J. Luis ◽  
Y.K. Somayajulu ◽  
V. Ramesh Babu ◽  
M.K. Dash ◽  
...  

2021 ◽  
Author(s):  
Elise Droste ◽  
Melchor González Dávila ◽  
Juana Magdalena Santana Casiano ◽  
Mario Hoppema ◽  
Gerd Rohardt ◽  
...  

<p>Tides have a large impact on coastal polynyas around Antarctica. We investigate the effect of semi-diurnal tidal cycles on the seawater carbonate chemistry in a coastal polynya hugging the Ekström Ice Shelf in the south-eastern Weddell Sea. This region experiences some of the strongest tides in the Southern Ocean. We assess the implications for the contribution of coastal polynyas to the carbon dioxide (CO<sub>2</sub>) air-sea flux of the Weddell Sea.</p><p>Two site visits, in January 2015 and January 2019, are intercompared in terms of the dissolved inorganic carbon (DIC) concentration, total alkalinity, pH, and CO<sub>2</sub> partial pressure (pCO<sub>2</sub>). The tides induce large variability in the carbonate chemistry of the coastal polynya in the austral summer: DIC concentrations vary between 2174 and 2223 umol kg<sup>-1</sup>.</p><p>The tidal fluctuation in the DIC concentration can swing the polynya from a sink to a source of atmospheric CO<sub>2 </sub>on a semi-diurnal timescale. We attribute these changes to the mixing of different water masses. The amount of variability induced by tides depends on – and is associated with – large scale oceanographic and biogeochemical processes that affect the characteristics and presence of the water masses being mixed, such as the rate of sea ice melt.</p><p>Sampling strategies in Antarctic coastal polynyas should always take tidal influences into account. This would help to reduce biases in our understanding of how coastal polynyas contribute to the CO<sub>2</sub> uptake by the Southern Ocean.</p>


1998 ◽  
Vol 103 (D13) ◽  
pp. 16691-16701 ◽  
Author(s):  
Graham B. Jones ◽  
Mark A. J. Curran ◽  
Hilton B. Swan ◽  
Richard M. Greene ◽  
F. Brian Griffiths ◽  
...  

2019 ◽  
Vol 117 (2) ◽  
pp. 889-894
Author(s):  
Torben Struve ◽  
David J. Wilson ◽  
Tina van de Flierdt ◽  
Naomi Pratt ◽  
Kirsty C. Crocket

The Southern Ocean is a key region for the overturning and mixing of water masses within the global ocean circulation system. Because Southern Ocean dynamics are influenced by the Southern Hemisphere westerly winds (SWW), changes in the westerly wind forcing could significantly affect the circulation and mixing of water masses in this important location. While changes in SWW forcing during the Holocene (i.e., the last ∼11,700 y) have been documented, evidence of the oceanic response to these changes is equivocal. Here we use the neodymium (Nd) isotopic composition of absolute-dated cold-water coral skeletons to show that there have been distinct changes in the chemistry of the Southern Ocean water column during the Holocene. Our results reveal a pronounced Middle Holocene excursion (peaking ∼7,000–6,000 y before present), at the depth level presently occupied by Upper Circumpolar Deep Water (UCDW), toward Nd isotope values more typical of Pacific waters. We suggest that poleward-reduced SWW forcing during the Middle Holocene led to both reduced Southern Ocean deep mixing and enhanced influx of Pacific Deep Water into UCDW, inducing a water mass structure that was significantly different from today. Poleward SWW intensification during the Late Holocene could then have reinforced deep mixing along and across density surfaces, thus enhancing the release of accumulated CO2 to the atmosphere.


2017 ◽  
Vol 19 (6) ◽  
pp. 2453-2467 ◽  
Author(s):  
Julie Dinasquet ◽  
Inga Richert ◽  
Ramiro Logares ◽  
Patricia Yager ◽  
Stefan Bertilsson ◽  
...  

2011 ◽  
Vol 8 (5) ◽  
pp. 1401-1413 ◽  
Author(s):  
M. González-Dávila ◽  
J. M. Santana-Casiano ◽  
R. A. Fine ◽  
J. Happell ◽  
B. Delille ◽  
...  

Abstract. Carbonate system variables were measured in the South Atlantic sector of the Southern Ocean along a transect from South Africa to the southern limit of the Antarctic Circumpolar Current (ACC) from February to March 2008. Eddies detached from the retroflection of the Agulhas Current increased the gradients observed along the fronts. Minima in the fugacity of CO2, fCO2, and maxima in pH on either side of the frontal zone were observed, noting that within the frontal zone fCO2 reached maximum values and pH was at a minimum. Vertical distributions of water masses were described by their carbonate system properties and their relationship to CFC concentrations. Upper Circumpolar Deep Water (UCDW) and Lower Circumpolar Deep Water (LCDW) offered pHT,25 values of 7.56 and 7.61, respectively. The UCDW also had higher concentrations of CFC-12 (>0.2 pmol kg−1) as compared to deeper waters, revealing that UCDW was mixed with recently ventilated waters. Calcite and aragonite saturation states (Ω) were also affected by the presence of these two water masses with high carbonate concentrations. The aragonite saturation horizon was observed at 1000 m in the subtropical area and north of the Subantarctic Front. At the position of the Polar Front, and under the influence of UCDW and LCDW, the aragonite saturation horizon deepened from 800 m to 1500 m at 50.37° S, and reached 700 m south of 57.5° S. High latitudes proved to be the most sensitive areas to predicted anthropogenic carbon increase. Buffer coefficients related to changes in [CO2], [H+] and Ω with changes in dissolved inorganic carbon (CT) and total alkalinity (AT) offered minima values in the Antarctic Intermediate Water and UCDW layers. These coefficients suggest that a small increase in CT will sharply decrease the status of pH and carbonate saturation. Here we present data that suggest that south of 55° S, surface water will be under-saturated with respect to aragonite within the next few decades.


Sign in / Sign up

Export Citation Format

Share Document