Low voltage ride-through operation of single-phase PV systems

Author(s):  
Zhongting Tang ◽  
Yongheng Yang
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Sajad Arab Ansari ◽  
Amir Reza Mizani ◽  
Siamak Ashouri ◽  
Javad Shokrollahi Moghani

Due to the fast growth of single-phase grid-connected photovoltaic (PV) systems, the existing grid codes are expected to be modified to guarantee the availability, quality, and reliability of the electrical system. Therefore, the future single-phase PV systems should become smarter and support low voltage ride-through (LVRT) capability, which are required for three-phase wind power systems. In this paper, the operation principle of a flyback inverter in a low-voltage ride-through operation is demonstrated in order to map future challenges. The steady state performance of the flyback inverter under voltage rise and drop conditions at boundary conduction mode (BCM) and discontinues conduction mode (DCM) is studied theoretically. The simulation results of the flyback inverter for various grid faults are presented to verify the theoretical analyses. The results indicate the fact that the flyback inverter at BCM condition can provide LVRT capability for photovoltaic microinverter applications in distributed generation (DG) systems, even though it does not need any auxiliary control branches and any limitations in components design.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yongheng Yang ◽  
Frede Blaabjerg

The progressive growing of single-phase photovoltaic (PV) systems makes the Distribution System Operators (DSOs) update or revise the existing grid codes in order to guarantee the availability, quality, and reliability of the electrical system. It is expected that the future PV systems connected to the low-voltage grid will be more active with functionalities of low-voltage ride-through (LVRT) and the grid support capability, which is not the case today. In this paper, the operation principle is demonstrated for a single-phase grid-connected PV system in a low-voltage ride-through operation in order to map future challenges. The system is verified by simulations and experiments. Test results show that the proposed power control method is effective and the single-phase PV inverters connected to low-voltage networks are ready to provide grid support and ride-through voltage fault capability with a satisfactory performance based on the grid requirements for three-phase renewable energy systems.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4796 ◽  
Author(s):  
Eyad Radwan ◽  
Mutasim Nour ◽  
Emad Awada ◽  
Ali Baniyounes

This paper presents a control scheme for a photovoltaic (PV) system that uses a single-phase grid-connected inverter with low-voltage ride-through (LVRT) capability. In this scheme, two PI regulators are used to adjust the power angle and voltage modulation index of the inverter; therefore, controlling the inverter’s active and reactive output power, respectively. A fuzzy logic controller (FLC) is also implemented to manage the inverter’s operation during the LVRT operation. The FLC adjusts (or de-rates) the inverter’s reference active and reactive power commands based on the grid voltage sag and the power available from the PV system. Therefore, the inverter operation has been divided into two modes: (i) Maximum power point tracking (MPPT) during the normal operating conditions of the grid, and (ii) LVRT support when the grid is operating under faulty conditions. In the LVRT mode, the de-rating of the inverter active output power allows for injection of some reactive power, hence providing voltage support to the grid and enhancing the utilization factor of the inverter’s capacity. The proposed system was modelled and simulated using MATLAB Simulink. The simulation results showed good system performance in response to changes in reference power command, and in adjusting the amount of active and reactive power injected into the grid.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 8477-8484 ◽  
Author(s):  
Juxiang Zhang ◽  
Peiqi Zhao ◽  
Zhen Zhang ◽  
Yongheng Yang ◽  
Frede Blaabjerg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document