13C MRS Measurements of in Vivo Rates of the Glutamate/Glutamine and GABA/Glutamine Neurotransmitter Cycles

Author(s):  
Douglas L. Rothman ◽  
Henk M. De Feyter ◽  
Graeme F. Mason ◽  
Robin A. de Graaf ◽  
Fahmeed Hyder ◽  
...  
Keyword(s):  
2021 ◽  
Vol 11 (23) ◽  
pp. 11445
Author(s):  
Jun-Sik Yoon ◽  
Jong-Min Kim ◽  
Han-Jae Chung ◽  
You-Jin Jeong ◽  
Gwang-Woo Jeong ◽  
...  

A proton-frequency-transparent (PFT) birdcage RF coil that contains carbon-proton switching circuits (CPSCs) is presented to acquire 13C MR signals, which, in turn, enable 1H imaging with existing 1H RF coils without being affected by a transparent 13C birdcage RF coil. CPSCs were installed in the PFT 13C birdcage RF coil to cut the RF coil circuits during 1H MR imaging. Finite-difference time-domain (FDTD) electromagnetic (EM) simulations were performed to verify the performance of the proposed CPSCs. The performance of the PFT 13C birdcage RF coil with CPSCs was verified via phantom and in vivo MR studies. In the phantom MR studies, 1H MR images and 13C MR spectra were acquired and compared with each other using the 13C birdcage RF coil with and without the CPSCs. For the in vivo MR studies, hyperpolarized 13C cardiac MRS and MRSI of swine were performed. The proposed PFT 13C birdcage RF coil with CPSCs led to a percent image uniformity (PIU) reduction of 1.53% in the proton MR images when compared with the case without it. FDTD EM simulations revealed PIU reduction of 0.06% under the same conditions as the phantom MR studies. Furthermore, an SNR reduction of 5.5% was observed at 13C MR spectra of corn-oil phantom using the PFT 13C birdcage RF coil with CPSCs compared with that of the 13C birdcage RF coil without CPSCs. Utilizing the PFT 13C birdcage RF coil, 13C-enriched compounds were successfully acquired via in vivo hyperpolarized 13C MRS/MRSI experiments. In conclusion, the applicability and utility of the proposed 16-leg low-pass PFT 13C birdcage RF coil with CPSCs were verified via 1H MR imaging and hyperpolarized 13C MRS/MRSI studies using a 3.0 T MRI system.


2018 ◽  
Vol 80 (3) ◽  
pp. 874-884 ◽  
Author(s):  
Blanca Lizarbe ◽  
Hongxia Lei ◽  
Joao M.N. Duarte ◽  
Bernard Lanz ◽  
Antoine Cherix ◽  
...  

2009 ◽  
Vol 13 ◽  
pp. S67
Author(s):  
P. van Eijsden ◽  
K.L. Behar ◽  
G. Mason ◽  
K.P.J. Braun ◽  
R.A. de Graaf

2010 ◽  
Vol 24 (2) ◽  
pp. 201-208 ◽  
Author(s):  
Helen J. Atherton ◽  
Marie A. Schroeder ◽  
Michael S. Dodd ◽  
Lisa C. Heather ◽  
Emma E. Carter ◽  
...  

2018 ◽  
Vol 40 (5-6) ◽  
pp. 463-474
Author(s):  
Alkisti Mikrogeorgiou ◽  
Duan Xu ◽  
Donna M. Ferriero ◽  
Susan J. Vannucci

Brain development is an energy-expensive process. Although glucose is irreplaceable, the developing brain utilizes a variety of substrates such as lactate and the ketone bodies, β-hydroxybutyrate and acetoacetate, to produce energy and synthesize the structural components necessary for cerebral maturation. When oxygen and nutrient supplies to the brain are restricted, as in neonatal hypoxia-ischemia (HI), cerebral energy metabolism undergoes alterations in substrate use to preserve the production of adenosine triphosphate. These changes have been studied by in situ biochemical methods that yielded valuable quantitative information about high-energy and glycolytic metabolites and established a temporal profile of the cerebral metabolic response to hypoxia and HI. However, these analyses relied on terminal experiments and averaging values from several animals at each time point as well as challenging requirements for accurate tissue processing.More recent methodologies have focused on in vivo longitudinal analyses in individual animals. The emerging field of metabolomics provides a new investigative tool for studying cerebral metabolism. Magnetic resonance spectroscopy (MRS) has enabled the acquisition of a snapshot of the metabolic status of the brain as quantifiable spectra of various intracellular metabolites. Proton (1H) MRS has been used extensively as an experimental and diagnostic tool of HI in the pursuit of markers of long-term neurodevelopmental outcomes. Still, the interpretation of the metabolite spectra acquired with 1H MRS has proven challenging, due to discrepancies among studies, regarding calculations and timing of measurements. As a result, the predictive utility of such studies is not clear. 13C MRS is methodologically more challenging, but it provides a unique window on living tissue metabolism via measurements of the incorporation of 13C label from substrates into brain metabolites and the localized determination of various metabolic fluxes. The newly developed hyperpolarized 13C MRS is an exciting method for assessing cerebral metabolism in vivo, that bears the advantages of conventional 13C MRS but with a huge gain in signal intensity and much shorter acquisition times. The first part of this review article provides a brief description of the findings of biochemical and imaging methods over the years as well as a discussion of their associated strengths and pitfalls. The second part summarizes the current knowledge on cerebral metabolism during development and HI brain injury.


1996 ◽  
Vol 39 ◽  
pp. 217-217
Author(s):  
Petra S Hüppi ◽  
Gary Zientara ◽  
Miles Tsuji ◽  
Steven Ringer ◽  
Ferenc Jolesz ◽  
...  

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi206-vi207
Author(s):  
Meryssa Tran ◽  
Georgios Batsios ◽  
Céline Taglang ◽  
Anne Marie Gillespie ◽  
Javad Nazarian ◽  
...  

Abstract Diffuse midline gliomas (DMGs) are a universally lethal form of childhood cancer. The infiltrative nature of DMGs makes them difficult to visualize by conventional magnetic resonance imaging. Genomics studies indicate that DMGs are driven by unique histone H3K27M mutations that result in broad epigenetic dysregulation. Many of the resulting changes in gene expression have the potential to induce metabolic reprogramming, which has been identified as a hallmark of cancer. The goal of this study was to dissect metabolic reprogramming in preclinical DMG models in order to identify novel magnetic resonance spectroscopy (MRS)-detectable metabolic biomarkers that can be exploited for non-invasive imaging. First, we used 1H-MRS, which reports on steady-state metabolism, to examine H3K27M mutant SF7761 cells and H3 wild-type normal human astrocytes (NHA). Lactate, glutathione and phosphocholine, which are involved in glycolysis, redox and phospholipid metabolism respectively, were elevated in SF7761 cells relative to NHAs. Mechanistically, these metabolic alterations were associated with upregulation of key enzymes including hexokinase 2, glutamate cysteine ligase and choline kinase a. Importantly, in vivo 1H-MRS showed elevated lactate, glutathione and total choline (combined signal from choline, phosphocholine and glycerophosphocholine) in mice bearing orthotopic SF7761 tumors relative to tumor-free controls. We then examined alterations in dynamic metabolic pathways in our models. Using thermally-polarized 13C-MRS, we identified elevated production of [2-13C]-lactate from [2-13C]-glucose in SF7761 cells relative to NHAs. Hyperpolarized 13C-MRS is a method of enhancing the 13C-MR signal such that metabolic fluxes can be interrogated with high sensitivity. Hyperpolarized [1-13C]-pyruvate flux to [1-13C]-lactate non-invasively monitors glycolysis and is in clinical trials in adult glioma patients. Importantly, hyperpolarized [1-13C]-pyruvate metabolism to lactate was elevated in SF7761 cells relative to NHAs. Collectively, our studies suggest that H3K27M mutant DMGs undergo reprogramming of glucose, redox and phospholipid metabolism that can be leveraged for non-invasive 1H- and hyperpolarized 13C-MRS-based imaging.


Sign in / Sign up

Export Citation Format

Share Document