New developments in intrauterine drug delivery systems and devices

Author(s):  
Zaida Urbán-Morlán ◽  
Luis Eduardo Serrano-Mora ◽  
Lizbeth Martínez-Acevedo ◽  
Gerardo Leyva-Gómez ◽  
Néstor Mendoza-Muñoz ◽  
...  
Author(s):  
Priyanka Kriplani ◽  
Kumar Guarve

Background: Transdermal drug delivery is an emerging and tempting system over oral and hypodermic drug delivery system. With the new developments in skin penetration techniques, anticancer drugs ranging from hydrophilic macromolecules to lipophilic drugs can be administered via transdermal route to treat cancer. Objective: In the present review, various approaches to enhance the transdermal delivery of drugs is discussed including the micro and nanotechnology based transdermal formulations like chemotherapy, gene therapy, immunotherapy, phototherapy, vaccines and medical devices. Limitations and advantages of various transdermal technologies is also elaborated. Method: In this review, patent applications and recent literature of transdermal drug delivery systems employed to cure mainly cancer are covered. Results: Transdermal drug delivery systems have proved their potential to cure cancer. They increase the bioavailability of drug by site specific drug delivery and can reduce the side effects/toxicity associated with anticancer drugs. Conclusion: The potential of transdermal drug delivery systems to carry the drug may unclutter novel ways for therapeutic intercessions in various tumors.


Author(s):  
G.E. Visscher ◽  
R. L. Robison ◽  
G. J. Argentieri

The use of various bioerodable polymers as drug delivery systems has gained considerable interest in recent years. Among some of the shapes used as delivery systems are films, rods and microcapsules. The work presented here will deal with the techniques we have utilized for the analysis of the tissue reaction to and actual biodegradation of injectable microcapsules. This work has utilized light microscopic (LM), transmission (TEM) and scanning (SEM) electron microscopic techniques. The design of our studies has utilized methodology that would; 1. best characterize the actual degradation process without artifacts introduced by fixation procedures and 2. allow for reproducible results.In our studies, the gastrocnemius muscle of the rat was chosen as the injection site. Prior to the injection of microcapsules the skin above the sites was shaved and tattooed for later recognition and recovery. 1.0 cc syringes were loaded with the desired quantity of microcapsules and the vehicle (0.5% hydroxypropylmethycellulose) drawn up. The syringes were agitated to suspend the microcapsules in the injection vehicle.


Sign in / Sign up

Export Citation Format

Share Document