Abrasive wear during machining of hard nanostructured cermet coatings

2022 ◽  
pp. 93-112
Author(s):  
A.K. Basak ◽  
Alokesh Pramanik
Wear ◽  
2001 ◽  
Vol 251 (1-12) ◽  
pp. 1009-1016 ◽  
Author(s):  
M Jones ◽  
A.J Horlock ◽  
P.H Shipway ◽  
D.G McCartney ◽  
J.V Wood

2011 ◽  
Vol 211-212 ◽  
pp. 182-185 ◽  
Author(s):  
Hong Tao Wang ◽  
Gang Chang Ji ◽  
Qing Yu Chen ◽  
Xue Fei Du ◽  
Wei Fu

Thermally sprayed carbide-based cermet coatings are being widely used for a variety of wear resistance applications. These coatings deposited by high velocity oxy-fuel (HVOF) technique are known to provide improved wear performance. In the present study, WC-12Co and Cr3C2-25NiCr carbide-based cermet coatings are deposited by HVOF. The microstructure and abrasion wear resistance of these coatings are compared. The correlation between coating microstructure and the coating wear behavior was investigated. The results indicated that WC-12Co coating has higher microhardness and better abrasive wear resistance in comparison to Cr3C2-25NiCr coating. The two HVOF sprayed carbide-based coatings have different abrasive wear behaviour.


2021 ◽  
Vol 47 (2) ◽  
pp. 1829-1836 ◽  
Author(s):  
Lei Qiao ◽  
Yuping Wu ◽  
Sheng Hong ◽  
Weiyang Long ◽  
Jie Cheng

2008 ◽  
Vol 4 (1) ◽  
pp. 1-26
Author(s):  
Gábor Kalácska

Research was performed on the friction, wear and efficiency of plastic gears made of modern engineering polymers and their composites both in a clean environment (adhesive sliding surfaces) and in an environment contaminated with solid particles and dust (abrasive), with no lubrication at all. The purpose is to give a general view about the results of abrasive wear tests including seven soil types as abrasive media. At the first stage of the research silicious sand was applied between the meshing gears and the wear of plastic and steel gears was evaluated and analyzed from the point of different material properties (elongation at break, hardness, yield stress, modulus of elasticity) and its combinations. The different correlations between the experienced wear and material features are also introduced. At the second stage of the project the abrasive sand was replaced with different physical soil types. The abrasive wear of gears is plotted in the function of soil types. The results highlight on the considerable role of physical soil types on abrasive wear resistance and the conclusions contain the detailed wear resistance. The results offer a new tribology database for the operation and maintenance of agricultural machines with the opportunity of a better material selection according to the dominant soil type. This can finally result longer lifetime and higher reliability of wearing plastic/steel parts.


MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


1995 ◽  
Vol 44 (506) ◽  
pp. 1332-1337
Author(s):  
Mitsuharu INABA ◽  
Kazumi TANI ◽  
Tomoki TOMITA ◽  
Yasuyuki TAKATANI ◽  
Yoshio HARADA

Sign in / Sign up

Export Citation Format

Share Document