vanadium carbides
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 20)

H-INDEX

13
(FIVE YEARS 4)

Friction ◽  
2021 ◽  
Author(s):  
Fangfang Wang ◽  
Liujie Xu ◽  
Shizhong Wei ◽  
Xi Wang ◽  
Chong Chen ◽  
...  

AbstractA high-vanadium alloy composite layer was prepared on the surface of a carbon steel using cast composite technology, and the wear properties of the composite layer were investigated. The results showed that the microstructure of the composite layer was composed of primary vanadium carbides (VC), flake martensite, residual austenite, and fine VC. The hardness of the cast alloy layer was 63 HRC. The abrasive wear resistance and impact wear resistance were increased by 60% and 26%, respectively, compared with those of high-chromium cast iron. The excellent wear resistance of the cast alloy layer is attributed to the high-hardness primary vanadium carbide and the large number of fine secondary vanadium carbides precipitated out of the cast alloy layer.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1871
Author(s):  
Kai Treutler ◽  
Swenja Lorenz ◽  
Volker Wesling

High entropy alloys (HEAs) are among of the most promising new metal material groups. The achievable properties can exceed those of common alloys in different ways. Due to the mixture of five or more alloying elements, the variety of high entropy alloys is fairly huge. The presented work will focus on some first insights on the weldability and the wear behavior of vanadium carbide precipitation Cr27.5Co14Fe22Mo22Ni11.65V2.85 HEA. The weldability should always be addressed in an early stage of any alloy design to avoid welding-related problems afterwards. The cast Cr27.5Co14Fe22Mo22Ni11.65V2.85 HEA has been remelted using a TIG welding process and the resulting microstructure has been examined. The changes in the microstructure due to the remelting process showed little influence of the welding process and no welding-related problems like hot cracks have been observed. It will be shown that vanadium carbides or vanadium-rich phases precipitate after casting and remelting in a two phased HEA matrix. The hardness of the as cast alloy is 324HV0.2 and after remelting the hardness rises to 339HV0.2. The wear behavior can be considered as comparable to a Stellite 6 cobalt base alloy as determined in an ASTM G75 test. Overall, the basic HEA design is promising due to the precipitation of vanadium carbides and should be further investigated.


2021 ◽  
Vol 7 ◽  
Author(s):  
Yi-Ting Lin ◽  
Hong Liang Yi ◽  
Zhi Yuan Chang ◽  
Hsin-Chih Lin ◽  
Hung-Wei Yen

This work investigated hydrogen trapping and hydrogen embrittlement (HE) in two press-hardened steels, 22MnB5 for 1,500 MPa grade and 34MnB5V for 2000 MPa grade, respectively. Superior to the 22MnB5 steel, the newly developed 34MnB5V steel has an ultimate tensile strength of over 2000 MPa without sacrificing ductility due to the formation of vanadium carbides (VCs). Simulated press hardening was applied to two steels, and hydrogen was induced by cathodic charging. Susceptibility to HE was validated by slow strain-rate tensile test. When hydrogen content was high, the 34MnB5V steel fractured in elastic regime. However, when hydrogen content was 0.8–1.0 ppmw, the 34MnB5V steel bore much higher stress than the 22MnB5 steel before fracture. The behavior of hydrogen trapping was investigated by thermal desorption analyses. Although the two steels trapped similar amounts of hydrogen after cathodic charging, their trapping mechanisms and effective trapping sites were different. In summary, a finer prior austenite grain size due to the pinning effect of VCs can also improve the toughness of 34MnB5V steel. Moreover, trapping hydrogen by grain boundary suppresses the occurrence of hydrogen-enhanced local plasticity. Microstructural refinement enhanced by VCs improves the resistance to HE in 34MnB5V steel. Importantly, the correlation between hydrogen trapping by VCs and improvement of HE is not significant. Hence, this work presents the challenge in designing irreversible trapping sites in future press-hardened steels.


2020 ◽  
Vol 56 (2) ◽  
pp. 256-262
Author(s):  
V. І. Pokhmurskyi ◽  
Kh. B. Vasyliv ◽  
V. P. Bondarenko ◽  
V. А. Vynar ◽  
N. B. Ratska ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2839
Author(s):  
Longfei Li ◽  
Bo Song ◽  
Biwen Yang ◽  
Lei Wang ◽  
Wensen Cheng

In this study, an optimum tempering temperature after a thermo-mechanical control process (TMCP) was proposed to improve the hydrogen-induced ductility loss of high-vanadium X80 pipeline steel. The results showed that with increasing tempering temperature from 450 to 650 °C, the size and quantity of granular bainite decreased but the spacing of deformed lath ferrite and the fraction of massive ferrite increased. The number of fine vanadium carbides increased as well. However, as the tempering temperature increased to 700 °C, the microstructure of T700 steel completely converted to massive ferrite and the grain size became larger. Additionally, the amount of nanoscale precipitates decreased again, and the mean size of precipitates evidently increased in T700 steel. The steel tempering at 650 °C, containing the most vanadium precipitates with a size less than 20 nm, had the lowest hydrogen diffusion coefficient and the best resistance to hydrogen-induced ductility loss.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1532 ◽  
Author(s):  
Yubin Zhang ◽  
Xinjiang Liao ◽  
Qiaoli Lin ◽  
Dekui Mu ◽  
Jing Lu ◽  
...  

In this work, the reactive wetting and infiltration behaviors of a newly designed Sn-V binary alloy were comprehensively explored on porous graphite for the first time. It was discovered that 0.5 wt.% addition of V can obviously improve the wettability of liquid Sn on porous graphite and the nominal V contents in Sn-V binary alloys has minor effects on the apparent contact angles wetted at 950 °C. Moreover, the V-containing Sn-V alloys were initiated to spread on porous graphite at ~650 °C and reached a quasi-equilibrium state at ~900 °C. Spreading kinetics of Sn-3V alloy on porous graphite well fitted in the classic product reaction controlled (PRC) model. However, our microstructural characterization demonstrated that, besides vanadium carbide formation, the adsorption of V element at the wetting three-phase contact line spontaneously contributed to the reactive spreading and infiltrating of Sn-V alloys on porous graphite. Meanwhile, the formation of continuous vanadium carbides could completely block the infiltration of Sn-V active solder alloy in porous graphite. Affected by the growth kinetics of vanadium carbides, the infiltration depth of Sn-V alloys in porous graphite decreased at increased isothermal wetting temperatures. This work is believed to provide implicative notions on the fabrication of graphite related materials and devices using novel V-containing bonding alloys.


MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


Sign in / Sign up

Export Citation Format

Share Document