coating microstructure
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 47)

H-INDEX

23
(FIVE YEARS 4)

2022 ◽  
Vol 11 (2) ◽  
pp. 345-353
Author(s):  
Meiqi Dai ◽  
Xuemei Song ◽  
Chucheng Lin ◽  
Ziwei Liu ◽  
Wei Zheng ◽  
...  

AbstractYttria-stabilized zirconia (YSZ) coatings and Al2O3-YSZ coatings were prepared by atmospheric plasma spraying (APS). Their microstructural changes during thermal cycling were investigated via scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). It was found that the microstructure and microstructure changes of the two coatings were different, including crystallinity, grain orientation, phase, and phase transition. These differences are closely related to the thermal cycle life of the coatings. There is a relationship between crystallinity and crack size. Changes in grain orientation are related to microscopic strain and cracks. Phase transition is the direct cause of coating failure. In this study, the relationship between the changes in the coating microstructure and the thermal cycle life is discussed in detail. The failure mechanism of the coating was comprehensively analyzed from a microscopic perspective.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012047
Author(s):  
Ziyan Pan ◽  
Mingduo Yuan ◽  
Zhenyu Zou ◽  
Weijian Zhang ◽  
Mingyue Du ◽  
...  

Abstract In this study, the fracture mechanisms of Cr-coated Zr4 alloy samples were studied by in-situ tensile testing with high-resolution observations. Both original sample and pre-oxidized sample were studied to study the effects of pre-oxidation on the cracking and failure behavior. For the Cr-coated Zr4 sample, with the increase of tensile strain, multiple surface cracks were dominant and less interfacial cracks were formed, indicating good interfacial strength of Cr coating. For the pre-oxidized samples, there was a thin oxide layer formed on the Cr coating surface, revealing improved oxidation resistance and protection effects. However, a brittle ZrCr2 diffusion layer was formed in the same while at the Cr/Zr4 interface underneath the Cr coating, which would lead to earlier micro-cracks formed under tensile stress and evidently degrade the interfacial strength. The findings in the study indicated the importance of optimizing coating microstructure in future study to avoid forming the above-mentioned brittle diffusion interlayer and the associated premature failure.


2021 ◽  
Vol 11 (21) ◽  
pp. 10189
Author(s):  
Paranjayee Mandal

Mo-W-C coatings with three different C/(Mo+W) ratios (5:1, 2.8:1 and 2.2:1) were deposited by using combined unbalanced magnetron sputtering (UBMS) and high-power impulse magnetron sputtering (HIPIMS) technology. The influence of the C/(Mo+W) ratio on coating microstructure and related tribological properties at ambient temperature and at 200 °C were studied in lubricated condition (up to 7500 m and 1800 m of sliding distances, respectively). Results showed that a decrease in the C/(Mo+W) ratio could be correlated with an increase in coating thickness, adhesion strength, hardness and elastic modulus values, and a decrease in the degree of graphitization. At ambient temperature, outstanding tribological properties (very low friction and negligible wear) were observed irrespective of the C/(Mo+W) ratio. At 200 °C, low C/(Mo+W) ratios (2.8:1 and 2.2:1) were found particularly beneficial to achieve excellent tribological properties. The keys to significant friction reduction at 200 °C were (i) in situ formation of MoS2 and WS2 due to tribo-chemical reactions and (ii) presence of amorphous carbon debris particles in the protective tribolayer. With an increase in sliding distance, the tribolayer gradually lowered the friction coefficient by protecting both the coating and counterpart from severe wear. On the other hand, a high C/(Mo+W) ratio (5:1) led to low friction but noticeable abrasive wear at 200 °C.


2021 ◽  
Vol 902 ◽  
pp. 49-55
Author(s):  
Srisaart Saifon ◽  
Usana Ampaipong Tharanon ◽  
Tuchinda Karuna

This paper presented an investigation result of single layer and bilayer of PTA coating of two different Fe-Cr-V powder commercially available and an improvement of the surface hardness by adding 35% of WC. In case of single layer, the microstructure was uniform across the thickness and also the hardness, while microstructure of the bilayer was obviously separated between interlayer and topcoat. The bilayer coating microstructure was changed, and approaching the topcoat, the microstructure was similar to single layer. The hardness of bilayer was decreased due to the dilution. After adding WC into the powder, the microstructure was changed and it could be seen that WC particles distributed across the coating. The hardness was increased due to dilution of some WC. Moreover, in all cases, PTA process offered coating with no crack and no re-precipitated with only small pores. However, adding WC could result in bigger pore size.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5492
Author(s):  
Wojciech Żórawski ◽  
Rafał Molak ◽  
Janusz Mądry ◽  
Jarosław Sienicki ◽  
Anna Góral ◽  
...  

In this research, the cold spray process as an additive manufacturing method was applied to deposit thick titanium coatings onto 7075 aluminium alloy. An analysis of changes in the microstructure and mechanical properties of the coatings depending on the standoff distance was carried out to obtain the maximum deposition efficiency. The process parameters were selected in such a way as to ensure the spraying of irregular titanium powder at the highest velocity and temperature and changing the standoff distance from 20 to 100 mm. Experimental studies demonstrated that the standoff distance had a significant effect on the microstructure of the coatings and their adhesion. Moreover, its rise significantly increased the deposition efficiency. The standoff distance also significantly affected the coating microstructure and their adhesion to the substrate, but did not cause any changes in their phase composition. The standoff distance also influenced the coating porosity, which first decreased to a minimum level of 0.2% and then increased significantly to 9.8%. At the same time, the hardness of the coatings increased by 30%. Numerical simulations confirmed the results of the tests.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3836
Author(s):  
Elisa Zanchi ◽  
Justyna Ignaczak ◽  
Bartosz Kamecki ◽  
Piotr Jasiński ◽  
Sebastian Molin ◽  
...  

This paper seeks to examine how the Mn–Co spinel interconnect coating microstructure can influence Cr contamination in an oxygen electrode of intermediate temperature solid oxide cells, at an operating temperature of 750 °C. A Mn–Co spinel coating is processed on Crofer 22 APU substrates by electrophoretic deposition, and subsequently sintered, following both the one-step and two-step sintering, in order to obtain significantly different densification levels. The electrochemical characterization is performed on anode-supported cells with an LSCF cathode. The cells were aged prior to the electrochemical characterization in contact with the spinel-coated Crofer 22 APU at 750 °C for 250 h. Current–voltage and impedance spectra of the cells were measured after the exposure with the interconnect. Post-mortem analysis of the interconnect and the cell was carried out, in order to assess the Cr retention capability of coatings with different microstructures.


2021 ◽  
Vol 1035 ◽  
pp. 584-590
Author(s):  
Kang Yuan ◽  
Zhao Ran Zheng

MCrAlY can be used as bond coats for thermal barrier coatings (TBCs) with good ductility and excellent resistance against high temperature oxidation and hot corrosion. The behavior of the microstructure development in the MCrAlY coatings plays a key role on the oxidation resistance. In this paper, the microstructure in the coatings oxidized at 750~1100 °C was analyzed. The formation of the phases and their fraction were studied by comparing thermodynamic simulation results with the experimental observations. At higher temperatures (>1000 °C) β-to-γ’-to-γ phase transformation took place while at lower temperatures (<1000 °C) β phase would transfer to γ directly. The results show that the simulation can semi-quantitatively predict the microstructure formed in the coating.


2021 ◽  
Author(s):  
G. Garcin ◽  
F. Delloro ◽  
M. Jeandin ◽  
J-F. Hochepied ◽  
C. Grente ◽  
...  

Abstract One of the main levers to reduce CO2 emissions in cars and trucks is mass and friction reduction, which is often achieved through the use of special coatings. The aim of the present work was to develop metal-ceramic-lubricant composite coatings with the best combination of wear, seizure, fatigue, and thermal resistance. Metal-based coatings incorporating hard particles and solid lubricants were cold sprayed onto steel substrates and the relationship between coating microstructure and tribology was studied. To meet the demanding tribological requirements of heavily loaded engines, the interfaces between the different components were optimized by selecting appropriate feedstock powders and assessing a wide range of process parameters. Alumina-reinforced bronze composite coatings were made from powders with different morphologies. Aggregated ceramic powders were found to be more beneficial in terms of wear than massive powders, and graphite was found to be effective for reducing seizure.


2021 ◽  
Author(s):  
M. Oechsner ◽  
T. Engler ◽  
H. Scheerer ◽  
Y. Joung ◽  
K. Bobzin ◽  
...  

Abstract High-velocity oxyfuel (HVOF) sprayed coatings of Cr3C2-NiCr containing solid lubricants such as nickel cladded graphite and hexagonal boron nitride were successfully developed and characterised with the aim of optimizing their friction and wear behaviour. HVOF technology was used for the integration of solid lubricants to achieve strong cohesion between particles while minimizing thermal decomposition. Coating microstructure and composition were measured and correlated to the results of tribological and corrosion tests. The integration of the solid lubricant greatly reduced friction and wear volume at room temperature, but the lubricating effect was highly dependent on atmosphere and temperature. Cr3C2-NiCr with hBN, however, tends to exhibit more stable wear resistance over a wider temperature range and can be used at temperatures beyond 450 °C.


Sign in / Sign up

Export Citation Format

Share Document