Appendix 1: Mitochondrial disease gene index

2020 ◽  
Author(s):  
Luigi D’Angelo ◽  
Elisa Astro ◽  
Monica De Luise ◽  
Ivana Kurelac ◽  
Nikkitha Umesh-Ganesh ◽  
...  

ABSTRACTComplex I (CI) is the largest enzyme of the mitochondrial respiratory chain and its defects are the main cause of mitochondrial disease. To understand the mechanisms regulating the extremely intricate biogenesis of this fundamental bioenergetic machine, we analyzed the structural and functional consequences of the ablation of NDUFS3, a non-catalytic core subunit. We prove that in diverse mammalian cell types a small amount of functional CI can still be detected in the complete absence of NDUFS3. In addition, we have determined the dynamics of CI disassembly when the amount of NDUFS3 is gradually decreased. The process of degradation of the complex occurs in a hierarchical and modular fashion where the ND4-module remains stable and bound to TMEM126A. We have thus, uncovered the function of TMEM126A, the product of a disease gene causing recessive optic atrophy, as a factor necessary for the correct assembly and function of CI.


2018 ◽  
Author(s):  
Tian Zhao ◽  
Caitlin M. Goedhart ◽  
Pingdewinde Sam ◽  
Susanne Lingrell ◽  
Adam J. Cornish ◽  
...  

AbstractExome sequencing of two sisters with congenital cataracts, short stature and white matter changes identified compound heterozygous variants in the PISD gene, encoding the phosphatidylserine decarboxylase enzyme that converts phosphatidylserine (PS) to phosphatidylethanolamine (PE) in the inner mitochondrial membrane (IMM). Decreased conversion of PS to PE, and depletion of total cellular PE levels in patient fibroblasts are consistent with impaired PISD enzyme activity. Meanwhile, as evidence for mitochondrial dysfunction, patient fibroblasts exhibited more fragmented mitochondrial networks, enlarged lysosomes, decreased maximal oxygen consumption rates and increased sensitivity to 2-deoxyglucose. Moreover, treatment with lyso-PE, which can replenish the mitochondrial pool of PE, restored mitochondrial and lysosome morphology in patient fibroblasts. Functional characterization of the PISD mutations demonstrates that the maternal variant causes an alternative splice product. Meanwhile, the paternal variant impairs autocatalytic self-processing of the PISD protein required for its activity. Finally, evidence for impaired activity of mitochondrial IMM proteases explains why the phenotypes of these PISD patients resemble recently described “mitochondrial chaperonopathies”. Collectively, these findings demonstrate that PISD is a novel mitochondrial disease gene.


2019 ◽  
Vol 2 (2) ◽  
pp. e201900353 ◽  
Author(s):  
Tian Zhao ◽  
Caitlin M Goedhart ◽  
Pingdewinde N Sam ◽  
Rasha Sabouny ◽  
Susanne Lingrell ◽  
...  

Exome sequencing of two sisters with congenital cataracts, short stature, and white matter changes identified compound heterozygous variants in the PISD gene, encoding the phosphatidylserine decarboxylase enzyme that converts phosphatidylserine to phosphatidylethanolamine (PE) in the inner mitochondrial membrane (IMM). Decreased conversion of phosphatidylserine to PE in patient fibroblasts is consistent with impaired phosphatidylserine decarboxylase (PISD) enzyme activity. Meanwhile, as evidence for mitochondrial dysfunction, patient fibroblasts exhibited more fragmented mitochondrial networks, enlarged lysosomes, decreased maximal oxygen consumption rates, and increased sensitivity to 2-deoxyglucose. Moreover, treatment with lyso-PE, which can replenish the mitochondrial pool of PE, and genetic complementation restored mitochondrial and lysosome morphology in patient fibroblasts. Functional characterization of the PISD variants demonstrates that the maternal variant causes an alternative splice product. Meanwhile, the paternal variant impairs autocatalytic self-processing of the PISD protein required for its activity. Finally, evidence for impaired activity of mitochondrial IMM proteases suggests an explanation as to why the phenotypes of these PISD patients resemble recently described “mitochondrial chaperonopathies.” Collectively, these findings demonstrate that PISD is a novel mitochondrial disease gene.


Sign in / Sign up

Export Citation Format

Share Document