Molten core concrete interaction and ablation of sacrificial material in ex-vessel scenarios

Author(s):  
Arun Nayak ◽  
Parimal Kulkarni
1997 ◽  
Vol 94 ◽  
pp. 849-860 ◽  
Author(s):  
PY Chevalier ◽  
E Fischer ◽  
B Cheynet ◽  
A Rivet ◽  
G Cenerino

Author(s):  
Lakshmi Thangasamy ◽  
◽  
Gunasekaran Kandasamy ◽  

Many researches on double skin sandwich having top and bottom steel plates and in between concrete core called as steel-concrete-steel (SCS) were carried out by them on this SCS type using with different materials. Yet, use of coconut shell concrete (CSC) as a core material on this SCS form construction and their results are very limited. Study investigated to use j-hook shear studs under flexure in the concept of steel-concrete-steel (SCS) in which the core concrete was CSC. To compare the results of CSC, the conventional concrete (CC) was also considered. To study the effect of quarry dust (QD) in its place of river sand (RS) was also taken. Hence four different mixes two without QD and two with QD both in CC and CSC was considered. The problem statement is to examine about partial and fully composite, moment capacity, deflection and ductility properties of CSC used SCS form of construction. Core concrete strength and the j-hook shear studs used are influences the moment carrying capacity of the SCS beams. Use of QD in its place of RS enhances the strength of concrete produced. Deflections predicted theoretically were compared with experimental results. The SCS beams showed good ductility behavior.


2011 ◽  
Vol 368-373 ◽  
pp. 489-494 ◽  
Author(s):  
Xu Lin Tang ◽  
Jian Cai ◽  
Qing Jun Chen ◽  
An He ◽  
Chun Yang

In order to study the mechanical behavior of the joint between concrete filled steel tubular column and beam with discontinuous column tube at the joint zone under axial pressure, the finite element analysis software ANSYS is adopted for parametric analysis and the analysis results are compared with experimental ones. The principal compressive stress is mainly transmitted by the inside area of the joint which is subjected to local compression if it is low, but extends to more outside areas of the joint if it is high. The radial compressive stress, which is the confined stress of the ring beam to the core concrete of the joint, keeps the same as that the width of the ring beam equal to the diameter of the core area of the joint. The vertical strain on the edge of the joint, which would lead to horizontal annular cracks in the side face of the ring beam, changes from tension in the whole height to tension only in the top part and compression in the lower part of the joint, which is consistent with the experimental phenomenon.


2013 ◽  
Vol 838-841 ◽  
pp. 1884-1890 ◽  
Author(s):  
Guang Long Qu ◽  
Yan Fa Gao ◽  
Liu Yang ◽  
Bin Jing Xu ◽  
Guo Lei Liu ◽  
...  

Compared with I-shaped and U-shaped supports in soft rock roadway, concrete-filled steel tubular (CFST) support, as a new supporting form, has stronger bearing capacity with reasonable price. So it is becoming more and more popular in roadway supporting of coal mine in China. In this article, the surrounding rock in soft rock roadway was classified into three different types: hard rock in deep coal mine, soft surrounding rock, extremely soft surrounding rock. And, according to the characteristics of deformation failure of the CFST support and the surrounding rock in the industrial tests, three different strength assessments, including assessment of axial compressive strength, assessment of lateral flexural performance, assessment of hardening rate of core concrete, were proposed through mechanical analysis and laboratory tests for the three different types of the surrounding rock, respectively. Moreover, aimed to insufficient flexural strength of the support or low hardening rate of the core concrete in some of the roadway supporting, strengthening lateral flexural performance or making early strength concrete was necessary for the above unfavorable situations. The laboratory test results showed that the ultimate bearing capacity for the CFST support with φ194*8mm of steel tube reinforced by φ38mm round steel was 31% greater than that of the unreinforced one, 177% greater than that of the U-shaped one with equivalent weight per unit length.


2012 ◽  
Vol 594-597 ◽  
pp. 947-954 ◽  
Author(s):  
Zhen Yu Liu

To study the debonding of concrete filled steel tube (CFST), pulling and bending methods were used to test the normal bond strength. Based on the test result, debonding due to temperature change and shrinkage of core concrete in CFST was analyzed. The test and analysis result shows that the bending method is a better test method; the concrete strength has little influence on bond strength while the surface condition of steel has much influence on it. The bond strength of steel which is rust is greater than that of the steel with smooth surface. According to the analysis on the bending test result, the normal bond strength of 0.86MPa was got and the debonding of CFST arch was analyzed, the analysis result shows that debonding will easily happen under the action of temperature change and shrinkage of core concrete. The test methods and results can provide a reference for engineering applications.


Author(s):  
Christophe Journeau ◽  
Pascal Piluso
Keyword(s):  

2016 ◽  
Vol 196 (3) ◽  
pp. 461-474 ◽  
Author(s):  
M. T. Farmer ◽  
C. Gerardi ◽  
N. Bremer ◽  
S. Basu
Keyword(s):  

Heliyon ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. e01386 ◽  
Author(s):  
J.A. Rojas ◽  
L.A. Ardila-Rodríguez ◽  
M.F. Diniz ◽  
M. Gonçalves ◽  
B. Ribeiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document