The Finite Element Analysis on the Local Compression of the Concrete Filled Steel Tubular Column-Beam Joint

2011 ◽  
Vol 368-373 ◽  
pp. 489-494 ◽  
Author(s):  
Xu Lin Tang ◽  
Jian Cai ◽  
Qing Jun Chen ◽  
An He ◽  
Chun Yang

In order to study the mechanical behavior of the joint between concrete filled steel tubular column and beam with discontinuous column tube at the joint zone under axial pressure, the finite element analysis software ANSYS is adopted for parametric analysis and the analysis results are compared with experimental ones. The principal compressive stress is mainly transmitted by the inside area of the joint which is subjected to local compression if it is low, but extends to more outside areas of the joint if it is high. The radial compressive stress, which is the confined stress of the ring beam to the core concrete of the joint, keeps the same as that the width of the ring beam equal to the diameter of the core area of the joint. The vertical strain on the edge of the joint, which would lead to horizontal annular cracks in the side face of the ring beam, changes from tension in the whole height to tension only in the top part and compression in the lower part of the joint, which is consistent with the experimental phenomenon.

1973 ◽  
Vol 10 (2) ◽  
pp. 129-144 ◽  
Author(s):  
N. A. Skermer

A simple trapezoidal element is presented for use in the analysis of thin core rockfill dams with nonlinear soil parameters. Handling of nonlinear soil parameters and allowance for the intermediate principal stress in plane strain problems are discussed. The analysis of El Infiernillo rockfill dam using trapezoids in the core and transitions, and variable Young's modulus and Poisson's ratio, reveals the transfer of stress that takes place around the core. Comparisons of strain observations at El Infiernillo Dam with results from the analysis are good, except in zones of compacted rockfill. It appears that the actual stiffness of compacted granular fills may be seriously underestimated, if soil parameters are based on data obtained from triaxial tests on normally consolidated samples. A fundamental understanding of soil deformation behavior would lead to an improvement in the finite element analysis of soil structure.


Author(s):  
Jia Gao ◽  
Seungbae Park ◽  
James Pitarresi ◽  
Dorel Homentcovschi

There has been an increasing interest in the applications of thin membrane in space application, flexible electronic display, manufacturing of glass displays and growth of film on materials at elevated temperatures. Because of the negligible bending stiffness of thin membranes, membranes are lack of resistance to compressive stress. For the applications at high temperatures, the thermal expansion coefficient mismatch between membrane and substrate materials may generate compressive stress that causes the membrane buckling. The study of thermal buckling of isotropic elastic plate in the context of the large - deflection theory was the subject of a series of papers[1-5]. However, it has been noted that none of these papers has considered the second buckling of the membrane resulting in membrane wrinkling. The presence of wrinkles may significantly change deflection and stress profile of membranes. So, it is important to develop an effective analysis method to investigate the wrinkle formation and evolution in membrane subjected the elevated temperature. This paper presents the experiment work to investigate wrinkle formation and evolution in membranes heated from room temperature up to 170 °C. The specimens consist of polymer and metal membranes with steel and silicon substrate respectively. A wide range of membrane shapes and aspect ratios are considered in this work. An experiment set up is developed to study the deflection profiles of membranes at discrete temperatures. The information gained from this experiment work is used to validate numerical modeling results. The Finite Element Analysis results using nonlinear post-buckling analysis are also included in this paper. The nonlinear post-buckling analysis provides a good understanding of the mechanism of wrinkle generation and evolution as temperature increased. It is shown that the first buckling of membrane significantly reduces bending stiffness thus to create localized buckling modes accounting for the wrinkle generation. The wrinkle pattern is stable until the temperature reaches the next critical value. After this critical temperature, the wrinkle pattern is changed until temperature reaches the next critical value. The new wrinkle pattern is keeping evolved until the final temperature is reached. The finite element analysis results are in good agreement with experimental observations.


2012 ◽  
Vol 229-231 ◽  
pp. 919-922
Author(s):  
Bao Dong Bai ◽  
Guo Hui Yang ◽  
Bing Yin Qu ◽  
Jian Zhang

In this paper, the modal analysis was carried out on the core and cavity of a 160KVA dry-type transformer based on the finite element analysis software of ANSYS. And the simulation results of the natural frequencies and modal shapes were obtained, which provided a theoretical guidance to the design of the transformer structure, and were meaningful to reduce the vibration and noise level of the transformer.


2011 ◽  
Vol 189-193 ◽  
pp. 3446-3451
Author(s):  
Xiao Feng Lu ◽  
Cui Zhao

Based on the finite element analysis software ABAQUS, a sequentially coupled fillet welding thermal-stress calculation program was developed to simulate the plate close welding structure. The welding temperature fields and the stress/strain distributions of plate sealing joint of the hydrogenation heat exchanger were obtained. The simulation results showed that there existed higher stress near the fillet weld sealing joint zone and the maximum stress at the start welding point, the plastic strain of the weld joint was lager and a strain mutation occurred on the weld overlay .The analysis of the calculation result provides theory references for controlling the welding residual stress and it’s of great significance to improve the reliability and safety of hydrogenation heat exchanger.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


2013 ◽  
Vol 83 (7) ◽  
pp. 1087-1096 ◽  
Author(s):  
A. Ranjbaran ◽  
H. Rousta ◽  
M. O. Ranjbaran ◽  
M. A. Ranjbaran ◽  
M. Hashemi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document