Techno-Economic Assessment of Conceptual Design for Methanol Production Using Coal and Natural Gas Based Parallel Process Configuration

Author(s):  
Usama Ahmed ◽  
Umer Zahid ◽  
Nabeel Ahmad
2020 ◽  
Vol 45 (59) ◽  
pp. 34483-34493
Author(s):  
Hua Liu ◽  
Jinghui Qu ◽  
Ming Pan ◽  
Bingjian Zhang ◽  
Qinglin Chen ◽  
...  

Author(s):  
Fábio C. Barbosa

Freight rail carriers have been continuously challenged to reduce costs and comply with increasingly stringent environmental standards, into a continuously competing and environmentally driven industry. In this context, current availability and relative abundance of clean and low cost non conventional gas reserves have aroused a comprehensive reevaluation of rail industry into fuel option, especially where freight rail are strongly diesel based. Countries in which rail sector is required to play an important role in transport matrix, where fuel expenditures currently accounts for a significant share of operational costs, like Australia, Brazil, United States and other continental countries, can be seen as strong candidates to adopt fuel alternatives to diesel fueled freight railways. Moreover, from an environmental perspective, the use of alternative fuels (like natural gas) for locomotive traction may allow rail freight carriers to comply with emission standards into a less technologically complex and costly way. In this context, liquefied natural gas (LNG) fueled freight locomotives are seen as a strong potential near-term driver for natural gas use in rail sector, with its intrinsic cost and environmental benefits and with the potential to revolutionize rail industry much like the transition from steam to diesel experienced into the fifties, as well as the more recent advent of use of alternating current diesel-electric locomotives. LNG rail fueled approach has been focused on both retrofitting existing locomotive diesel engines, as well as on original manufactured engines. Given the lower polluting potential of natural gas heavy engines, when compared to diesel counterparts, LNG locomotives can be used to comply with increasingly restrictive Particulate Matter (PM) and Nitrogen Oxides (NOx) emission standards with less technological complexity (engine design and aftertreatment hardware) and their intrinsic lower associated costs. Prior to commercial operation of LNG locomotives, there are some technical, operational and economic hurdles that need to be addressed, i.e. : i) locomotive engine and fuel tender car technological maturity and reliability improvement; ii) regulation improvement, basically focused on operational safety and interchange operations; iii) current and long term diesel - gas price differential, a decisive driver, and, finally, iv) LNG infrastructure requirements (fueling facilities, locomotives and tender car specifications). This work involved an extensive research into already published works to present an overview of LNG use in freight rail industry into a technical, operational and economical perspective, followed by a critical evaluation of its potential into some relevant freight rail markets, such as United States, Brazil and Australia, as well as some European non electrified rail freight lines.


2022 ◽  
Vol 56 ◽  
pp. 101852
Author(s):  
Giancarlo Gentile ◽  
Davide Bonalumi ◽  
Johannis A.Z. Pieterse ◽  
Francesco Sebastiani ◽  
Leonie Lucking ◽  
...  

2020 ◽  
Vol 6 ◽  
pp. 391-402 ◽  
Author(s):  
Pavel Tcvetkov ◽  
Alexey Cherepovitsyn ◽  
Alexey Makhovikov

2019 ◽  
Vol 965 ◽  
pp. 117-123
Author(s):  
Igor Lapenda Wiesberg ◽  
José Luiz de Medeiros ◽  
Ofélia de Queiroz Fernandes Araújo

Chemical conversion of carbon dioxide (CO2) to methanol has the potential to address two relevant sustainability issues: economically feasible replacement of fossil raw materials and avoidance of greenhouse gas emissions. However, chemical stability of CO2 is a challenging impediment to conversion, requiring harsh reaction conditions at the expense of increased energy input, adding capital, operational and environmental costs. This work evaluates two innovative chemical conversion of CO2 to methanol: the indirect conversion, which uses synthesis gas produced by bi-reforming as intermediate, and the direct conversion, via hydrogenation. Process simulations are used to obtain mass and energy balances, needed to support economic analyses. Due to the uncertainties in the raw material prices, including CO2 and hydrogen (H2), its limits for economic viability are estimated and sensitivity analyzes are carried in predetermined prices (base cases). It is considered the scenario of free CO2 available in atmospheric conditions, as in a bioethanol industry, but the sensitivity analyses show the results for other scenarios, as in a CO2 rich natural gas, in which the cost of processing CO2 is zero. The economic analyses show that hydrogenation can be feasible if hydrogen prices are lower than 1000 US$/t, while the indirect route is viable only for cheap sources of natural gas below 3.7 US$/MMBtu. The CO2 pre-treatment costs are not as sensible as the others raw materials.


Sign in / Sign up

Export Citation Format

Share Document