An artificial intelligence mediated integrated wearable device for diagnosis of cardio through remote monitoring

2022 ◽  
pp. 319-335
Author(s):  
A. Sivasangari ◽  
R. Subhashini ◽  
S. Poonguzhali ◽  
Immanuel Rajkumar ◽  
J.S. Vimali ◽  
...  
Author(s):  
Wael Mohammad Alenazy

The integration of internet of things, artificial intelligence, and blockchain enabled the monitoring of structural health with unattended and automated means. Remote monitoring mandates intelligent automated decision-making capability, which is still absent in present solutions. The proposed solution in this chapter contemplates the architecture of smart sensors, customized for individual structures, to regulate the monitoring of structural health through stress, strain, and bolted joints looseness. Long range sensors are deployed for transmitting the messages a longer distance than existing techniques. From the simulated results, different sensors record the monitoring information and transmit to the blockchain platform in terms of pressure points, temperature, pre-tension force, and the architecture deems the criticality of transactions. Blockchain platform will also be responsible for storage and accessibility of information from a decentralized medium, automation, and security.


Author(s):  
Juan Pedro Cascales Sandoval ◽  
Emmanuel Roussakis ◽  
Lilian Witthauer ◽  
Avery Goss ◽  
Xiaolei Li ◽  
...  

2020 ◽  
pp. 1-11
Author(s):  
Xu Kun ◽  
Zhiliang Wang ◽  
Ziang Zhou ◽  
Wang Qi

For industrial production, the traditional manual on-site monitoring method is far from meeting production needs, so it is imperative to establish a remote monitoring system for equipment. Based on machine learning algorithms, this paper combines artificial intelligence technology and Internet of Things technology to build an efficient, fast, and accurate industrial equipment monitoring system. Moreover, in view of the characteristics of the diverse types of equipment, scattered layout, and many parameters in the manufacturing equipment as well as the complexity of the high temperature, high pressure, and chemical environment in which the equipment is located, this study designs and implements a remote monitoring and data analysis system for industrial equipment based on the Internet of Things. In addition, based on the application scenarios of the actual aeronautical weather floating platform test platform, this study combines the platform prototype system to design and implement a set of strong real-time communication test platform based on the Windows operating system. The test results show that the industrial Internet of Things system based on machine learning and artificial intelligence technology constructed in this paper has certain practicality.


Author(s):  
Shintaro Kumano ◽  
Naotaka Mikami ◽  
Kuniaki Aoyama

Power plant owners require their plants’ high reliability, availability and also reduction of the cost in today’s power generation industry. In addition, the power generation industry is faced with a reduction of experienced operators and sophistication of power generation equipment. Remote monitoring service provided by original equipment manufacturers (OEMs) has become increasingly popular due to growing demand for both improvement of plant reliability and solution of experienced operator shortage. Through remote monitoring service, customers can benefit from swift and appropriate operational support based on OEM’s know-how. Before implementation of remote monitoring, the customer and OEM often required repeated interchanges of information about operation and instrumentation data. These interchanges took a lot of time. Data analysis and estimation of deterioration were time-consuming. Remote monitoring has enabled us, OEMs, not only to access to a plant’s real-time information but also to trace the historical operation data, and therefore the required time of data analysis and improvement has been reduced. Mitsubishi Heavy Industries, Ltd. also embarked on around-the-clock remote monitoring service for gas turbine plant over a decade ago and has increased its ability over time. At present, the application of remote monitoring systems have been extended not only into proactive maintenance by making use of diagnostic techniques carried out by expert engineers but also into building a pattern recognition system and an artificial intelligence system using expert’ knowledge. Conventional diagnostics is only determining whether the plant is being operated within the prescribed threshold levels. Pattern recognition is a state-of-the-art technique for diagnosing plant operating conditions. By comparing past and present conditions, small deterioration can be detected before it needs inspection or repair, while all the operating parameter is within their threshold levels. Mahalanobis-Taguchi method (MT method) is a technique for pattern recognition and has the advantage of diagnosing overall GT condition by combining many variables into one indicator called Mahalanobis distance. MHI has applied MT method to the monitoring of gas turbines and verified it to be efficient method of diagnostics. Now, in addition to the MT method, automatic abnormal data discrimination system has been developed based on an artificial intelligence technique. Among a lot of artificial intelligence techniques, Bayesian network mathematical model is used.


2021 ◽  
pp. 78-88
Author(s):  
Guy Fagherazzi ◽  
Aurélie Fischer ◽  
Muhannad Ismael ◽  
Vladimir Despotovic

Diseases can affect organs such as the heart, lungs, brain, muscles, or vocal folds, which can then alter an individual’s voice. Therefore, voice analysis using artificial intelligence opens new opportunities for healthcare. From using vocal biomarkers for diagnosis, risk prediction, and remote monitoring of various clinical outcomes and symptoms, we offer in this review an overview of the various applications of voice for health-related purposes. We discuss the potential of this rapidly evolving environment from a research, patient, and clinical perspective. We also discuss the key challenges to overcome in the near future for a substantial and efficient use of voice in healthcare.


Sign in / Sign up

Export Citation Format

Share Document