Damage mechanisms and models of ceramic–matrix composites

2022 ◽  
pp. 13-34
Author(s):  
Longbiao Li
Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4691
Author(s):  
Nicolas Guel ◽  
Zeina Hamam ◽  
Nathalie Godin ◽  
Pascal Reynaud ◽  
Olivier Caty ◽  
...  

In this paper, acoustic emission data fusion based on multiple measurements is presented for damage detection and identification in oxide-based ceramic matrix composites. Multi-AE (acoustic emission) sensor fusion is considered with the aim of a better identification of damage mechanisms. In this context, tensile tests were conducted on ceramic matrix composites, fabricated with 3M™ Nextel™ 610 fibers and aluminosilicate matrix, with two kinds of AE sensors. Redundant and complementary sensor data were merged to enhance AE system capability and reliability. Data fusion led to consistent signal clustering with an unsupervised procedure. A correlation between these clusters and the damage mechanisms was established thanks to in situ observations. The complementarity of the information from both sensors greatly improves the characterization of sources for their classification. Moreover, this complementarity allows features to be perceived more precisely than using only the information from one kind of sensor.


Author(s):  
Longbiao Li

Under cyclic fatigue loading, cyclic-dependent damage mechanisms affect the vibration damping of fiber-reinforced ceramic-matrix composites (CMCs). In this paper, a cyclic-dependent vibration damping model of fiber-reinforced CMCs is developed. Combining cyclic-dependent damage mechanisms, damage models and dissipated energy model, relationships between composite vibration damping, cyclic-dependent damage mechanisms, vibration stress and applied cycle number are established. Effects of material properties and damage state on composite vibration damping are analyzed for different applied cycle number and vibration stress. Experimental composite vibration damping of 2D and 3D C/SiC composites without/with coating is predicted for different vibration frequencies and applied cycle number. With increasing applied cycle number, cyclic-dependent composite vibration damping increases due to the increase ratio of interface debonding and slip. When fiber volume and matrix cracking spacing increase, cyclic-dependent composite vibration damping decreases due to the decrease ratio of interface debonding and slip.


Sign in / Sign up

Export Citation Format

Share Document