Methanol Production from Coke Oven Gas and Blast Furnace Gas

Author(s):  
Lingyan Deng ◽  
Thomas A. Adams
Author(s):  
Edoardo Bertolotto ◽  
Alberto Amato ◽  
Li Guoqiang

Abstract The present paper describes atmospheric experimental tests of a new Ansaldo Energia full scale burner which was designed to burn fuels byproduct of steel making processes (mixtures of Blast-Furnace Gas (BFG) and Coke-Oven Gas (COG)), characterized by very low heating values (LHV∼2–3.5 MJ/kg) and very low stoichiometric air/fuel ratios (∼0.5–1 kg/kg). In particular, flame stability and blow-out margins were assessed for different burner variants and fuel compositions such as pure BFG, blends of BFG with increasing content of COG, and also a synthetic mixture of natural gas, hydrogen and nitrogen (NG/H2/N2). Except for pressure, all burner inlet conditions were simulated as in the actual gas turbine engine. The best performing burner among those tested demonstrated an excellent burning stability behavior over a wide operating range and stably burned pure BFG without any supplementary fuel. Furthermore, considering that in most operating concepts gas turbine engines for Ultra-Low BTU applications require a back-up fuel (such as oil, propane or natural gas) to ignite and ramp up or to perform load-rejections, the present atmospheric tests also assessed maneuvers to switch from natural gas operation to syngas operation. Also in this type of dual-fuel operation the burner demonstrated a wide flame stability range.


Author(s):  
Federico Bonzani ◽  
Giacomo Pollarolo ◽  
Franco Rocca

ANSALDO ENERGIA S.p.A. has been commissioned by ELETTRA GLT S.p.A, a company located in Trieste, Italy for the realisation of a combined cycle plant where all the main components (gas turbine, steam turbine, generator and heat recovery steam generator) are provided by ANSALDO ENERGIA. The total power output of the plant is 180 MW. The gas turbine is a V94.2 K model gas turbine dual fuel (natural gas and steelworks process gas), where the fuel used as main fuel is composed by a mixture of natural gas, blast furnace gas and coke oven gas in variable proportions according to the different working conditions of the steel work plant. The main features adopted to burn such a kind of variability of fuels are reported below: • fuel as by product of steel making factory gas (coke oven gas “COG”, blast furnace gas “BFG”) with natural gas integration; • modified compressor from standard V94.2, since no air extraction is foreseen; • dual fuel burner realised based on Siemens design. This paper describes the operating experience achieved on the gas turbine, focusing on the main critical aspect to be overcome and on to the test results during the commissioning and the early operating phase. The successful performances carried out have been showing a high flexibility in burning with stable combustion a very different fuel compositions with low emissions measured all operating conditions.


2013 ◽  
Vol 634-638 ◽  
pp. 842-845 ◽  
Author(s):  
Wei Guo ◽  
Jian Jun Wang ◽  
Wen Gui Gao ◽  
Hua Wang

This paper elaborated the technological route of preparing higher alcohols using blast furnace gas (BFG) and coke oven gas (COG) as raw materials. An example was set up a model of environmental and economic evaluation on reutilization of gas as resource.This paper evaluates and analyses as well the efficiency of emission reduction and its economy in terms of reutilization of BFG. The result shows that preparation of higher alcohols using BFG can not only achieve good carbon emission reduction effect, but also get a good economic value.


Author(s):  
Diego Jhovanny Mariños Rosado ◽  
Samir Boset Rojas Chávez ◽  
Jordan Amaro Gutierrez ◽  
João Carvalho ◽  
Miguel Huaraz Rodriguez ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Duan Tianhong ◽  
Wang Zuotang ◽  
Zhou Limin ◽  
Li Dongdong

To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.


2020 ◽  
Vol 169 ◽  
pp. 114905
Author(s):  
Diego J. Mariños Rosado ◽  
Samir B. Rojas Chávez ◽  
Jordan Amaro Gutierrez ◽  
Fernando H. Mayworm de Araújo ◽  
João A. de Carvalho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document