2020 ◽  
Vol 29 (7) ◽  
pp. 1117-1137 ◽  
Author(s):  
Wenlin Feng ◽  
Chunsheng Qiao ◽  
Shuangjian Niu ◽  
Zhao Yang ◽  
Tan Wang

The experimental results show that the creep properties of the rocks are affected by the initial damage, and the damage evolution also has a significant impact on the time-dependent properties of the rocks during the creep. However, the effects of the initial damage and the damage evolution are seldom considered in the current study of the rocks' creep models. In this paper, a new nonlinear creep damage model is proposed based on the multistage creep test results of the sandstones with different damage degrees. The new nonlinear creep damage model is improved based on the Nishihara model. The influences of the initial damage and the damage evolution on the components in the Nishihara model are considered. The creep damage model can not only describe the changes in three creep stages, namely, the primary creep, the secondary creep, and the tertiary creep, but also reflect the influence of the initial damage and the damage evolution on creep failure. The nonlinear least squares method is used to determine the parameters in the nonlinear creep damage model. The consistency between the experimental data and the predicted results indicates the applicability of the nonlinear damage model to accurately predict the creep deformation of the rocks with initial damage.


2008 ◽  
Vol 41 (13) ◽  
pp. 4969-4977 ◽  
Author(s):  
Robert A. Riggleman ◽  
Kenneth S. Schweizer ◽  
Juan J. de Pablo

1977 ◽  
Vol 103 (1) ◽  
pp. 113-124
Author(s):  
Zdeněk P. Bažant ◽  
Ali A. Asghari

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 651
Author(s):  
Jianxing Mao ◽  
Zhixing Xiao ◽  
Dianyin Hu ◽  
Xiaojun Guo ◽  
Rongqiao Wang

The creep-fatigue crack growth problem remains challenging since materials exhibit different linear and nonlinear behaviors depending on the environmental and loading conditions. In this paper, we systematically carried out a series of creep-fatigue crack growth experiments to evaluate the influence from temperature, stress ratio, and dwell time for the nickel-based superalloy GH4720Li. A transition from coupled fatigue-dominated fracture to creep-dominated fracture was observed with the increase of dwell time at 600 °C, while only the creep-dominated fracture existed at 700 °C, regardless of the dwell time. A concise binomial crack growth model was constructed on the basis of existing phenomenal models, where the linear terms are included to express the behavior under pure creep loading, and the nonlinear terms were introduced to represent the behavior near the fracture toughness and during the creep-fatigue interaction. Through the model implementation and validation of the proposed model, the correlation coefficient is higher than 0.9 on ten out of twelve sets of experimental data, revealing the accuracy of the proposed model. This work contributes to an enrichment of creep-fatigue crack growth data in the typical nickel-based superalloy at elevated temperatures and could be referable in the modeling for damage tolerance assessment of turbine disks.


Author(s):  
S. O. Chepilko ◽  

Problems of taking into account nonlinear creep in steel- reinforced concrete beams are considered basing on the integral equation of viscous-elastic-plasticity of concrete. There has been obtained the resolving system of nonlinear integral equations, a linearization of this system has been carried out, its asymptotic solutions have been written out for the theory of elastic heredity case. The analysis of taking into account nonlinear creep has been performed compared with the linear creep equations and an instantaneous (short-term) loading allowing for concrete’s nonlinear diagram.


Sign in / Sign up

Export Citation Format

Share Document