The Shear Band Deformation Process in Metallic Glasses

Author(s):  
P.E. Donovan ◽  
W.M. Stobbs
1983 ◽  
Vol 31 (1) ◽  
pp. 1-8 ◽  
Author(s):  
P.E. Donovan ◽  
W.M. Stobbs

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4384
Author(s):  
Mohd Aidy Faizal Johari ◽  
Asmawan Mohd Sarman ◽  
Saiful Amri Mazlan ◽  
Ubaidillah U ◽  
Nur Azmah Nordin ◽  
...  

Micro mechanism consideration is critical for gaining a thorough understanding of amorphous shear band behavior in magnetorheological (MR) solids, particularly those with viscoelastic matrices. Heretofore, the characteristics of shear bands in terms of formation, physical evolution, and response to stress distribution at the localized region have gone largely unnoticed and unexplored. Notwithstanding these limitations, atomic force microscopy (AFM) has been used to explore the nature of shear band deformation in MR materials during stress relaxation. Stress relaxation at a constant low strain of 0.01% and an oscillatory shear of defined test duration played a major role in the creation of the shear band. In this analysis, the localized area of the study defined shear bands as varying in size and dominantly deformed in the matrix with no evidence of inhibition by embedded carbonyl iron particles (CIPs). The association between the shear band and the adjacent zone was further studied using in-phase imaging of AFM tapping mode and demonstrated the presence of localized affected zone around the shear band. Taken together, the results provide important insights into the proposed shear band deformation zone (SBDZ). This study sheds a contemporary light on the contentious issue of amorphous shear band deformation behavior and makes several contributions to the current literature.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2815
Author(s):  
Yu Hang Yang ◽  
Jun Yi ◽  
Na Yang ◽  
Wen Liang ◽  
Hao Ran Huang ◽  
...  

Bulk metallic glasses have application potential in engineering structures due to their exceptional strength and fracture toughness. Their fatigue resistance is very important for the application as well. We report the tension-tension fatigue damage behavior of a Zr61Ti2Cu25Al12 bulk metallic glass, which has the highest fracture toughness among BMGs. The Zr61Ti2Cu25Al12 glass exhibits a tension-tension fatigue endurance limit of 195 MPa, which is higher than that of high-toughness steels. The fracture morphology of the specimens depends on the applied stress amplitude. We found flocks of shear bands, which were perpendicular to the loading direction, on the surface of the fatigue test specimens with stress amplitude higher than the fatigue limit of the glass. The fatigue cracking of the glass initiated from a shear band in a shear band flock. Our work demonstrated that the Zr61Ti2Cu25Al12 glass is a competitive structural material and shed light on improving the fatigue resistance of bulk metallic glasses.


1998 ◽  
Vol 554 ◽  
Author(s):  
David M. Owen ◽  
Ares J. Rosakis ◽  
William L. Johnson

AbstractThe understanding of dynamic failure mechanisms in bulk metallic glasses is important for the application of this class of materials to a variety of engineering problems. This is true not only for design environments in which components are subject to high loading rates, but also when components are subjected to quasi-static loading conditions where observations have been made of damage propagation occurring in an unstable, highly dynamic manner. This paper presents preliminary results of a study of the phenomena of dynamic crack initiation and growth as well as the phenomenon of dynamic localization (shear band formation) in a beryllium-bearing bulk metallic glass, Zr41.25Ti13.75Ni10Cu12.75Be22.5. Pre-notched and prefatigued plate specimens were subjected to quasi-static and dynamic three-point bend loading to investigate crack initiation and propagation. Asymmetric impact loading with a gas gun was used to induce dynamic shear band growth. The mechanical fields in the vicinity of the dynamically loaded crack or notch tip were characterized using high-speed optical diagnostic techniques. The results demonstrated a dramatic increase in the crack initiation toughness with loading rate and subsequent crack tip speeds approaching 1000 m s−1. Dynamic crack tip branching was also observed under certain conditions. Shear bands formed readily under asymmetric impact loading. The shear bands traveled at speeds of approximately 1300 m s−1 and were accompanied by intense localized heating measured using high-speed full-field infrared imaging. The maximum temperatures recorded across the shear bands were in excess of 1500 K.


2017 ◽  
Vol 119 (19) ◽  
Author(s):  
D. Şopu ◽  
A. Stukowski ◽  
M. Stoica ◽  
S. Scudino

2019 ◽  
Vol 521 ◽  
pp. 119484 ◽  
Author(s):  
Ding Zhou ◽  
Xianhang Zhao ◽  
Bingjin Li ◽  
Naidan Hou ◽  
Zihao Ma ◽  
...  

2020 ◽  
Vol 127 (11) ◽  
pp. 115101 ◽  
Author(s):  
Karina E. Avila ◽  
Stefan Küchemann ◽  
Iyad Alabd Alhafez ◽  
Herbert M. Urbassek

Sign in / Sign up

Export Citation Format

Share Document