Air pollution control model using machine learning and IoT techniques

Author(s):  
Chetan Shetty ◽  
B.J. Sowmya ◽  
S. Seema ◽  
K.G. Srinivasa
2019 ◽  
Vol 11 (21) ◽  
pp. 5894 ◽  
Author(s):  
Wang ◽  
Zhao ◽  
Yang ◽  
Wang ◽  
Xue ◽  
...  

To reduce air pollutant control costs and solve the problem of decreased employment caused by air pollution control, we established a double-objective optimization Joint Control Model (JCM) based on emission rights futures trading. The JCM calculates the spot price of emission rights, classifies regions in the trading market for emission rights into buyers and sellers, and calculates the optimal cooperative pollution abatement quantity. Compared with a non-cooperative control mode, the JCM generated benefits of US$2485.19 × 106. We then used a Game Quadratic Programming (GQP) method to distribute the benefits, and applied the JCM to a case study of the abatement of sulfur dioxide in China’s Shanxi, Henan, and Shaanxi provinces. We found that: (i) Compared with a JCM that does not account for employment, employment under the JCM increased by 3.20 × 103 people, and the pollution control cost decreased by US$11.20 × 106 under the JCM that considered employment. The effect of the latter model is better than that of the former. (ii) Employment under the JCM increased by 18.80 × 104 people compared with that under a territorial control mode, reducing the cost by US$99.73 × 106. The JCM is helpful for all participating regions to balance environmental and livelihood issues in the process of air pollution control to achieve sustainable development.


2021 ◽  
Vol 15 (5) ◽  
pp. 1-16
Author(s):  
Bo Liu ◽  
Xi He ◽  
Mingdong Song ◽  
Jiangqiang Li ◽  
Guangzhi Qu ◽  
...  

Atmospheric visibility is an indicator of atmospheric transparency and its range directly reflects the quality of the atmospheric environment. With the acceleration of industrialization and urbanization, the natural environment has suffered some damages. In recent decades, the level of atmospheric visibility shows an overall downward trend. A decrease in atmospheric visibility will lead to a higher frequency of haze, which will seriously affect people's normal life, and also have a significant negative economic impact. The causal relationship mining of atmospheric visibility can reveal the potential relation between visibility and other influencing factors, which is very important in environmental management, air pollution control and haze control. However, causality mining based on statistical methods and traditional machine learning techniques usually achieve qualitative results that are hard to measure the degree of causality accurately. This article proposed the seq2seq-LSTM Granger causality analysis method for mining the causality relationship between atmospheric visibility and its influencing factors. In the experimental part, by comparing with methods such as linear regression, random forest, gradient boosting decision tree, light gradient boosting machine, and extreme gradient boosting, it turns out that the visibility prediction accuracy based on the seq2seq-LSTM model is about 10% higher than traditional machine learning methods. Therefore, the causal relationship mining based on this method can deeply reveal the implicit relationship between them and provide theoretical support for air pollution control.


Sign in / Sign up

Export Citation Format

Share Document