Friction Stir Welding of High Strength 7XXX Aluminum Alloys

2000 ◽  
Vol 40 (Suppl) ◽  
pp. S15-S19 ◽  
Author(s):  
Kazuhiro Nakata ◽  
Young Gon Kim ◽  
Masao Ushio ◽  
Takenori Hashimoto ◽  
Shigetoshi Jyogan

2016 ◽  
Vol 710 ◽  
pp. 41-46 ◽  
Author(s):  
Aline F.S. Bugarin ◽  
Fernanda Martins Queiroz ◽  
Maysa Terada ◽  
Hercílio G. De Melo ◽  
Isolda Costa

2XXX and 7XXX high strength aluminum alloys are the most used materials for structural parts of aircrafts due to their high strength/weight ratio. Their joining procedure is an engineering challenge since they present low weldability. Friction Stir Welding (FSW) is a joining technology developed in the early 90 ́s. It is a solid-state welding process, without the use of fillers or gas shield, that eliminates conventional welding defects and has been considered of great interest for application in the aircraft industry. FSW of aluminum alloys results in four regions of different microstructures, specifically: the base material (BM), the heat affected zone (HAZ), the thermo-mechanically affected zone (TMAZ), and the nugget zone (NZ). The complex microstructure of the weld region leads to higher susceptibility to localized corrosion as compared to the BM even when similar alloys are joined. The welding of dissimilar alloys in its turn results in even more complex microstructures as materials with intrinsically different composition, microstructures and electrochemical properties are put in close contact. Despite the great interest in FSW, up to now, only few corrosion studies have been carried out for characterization of the corrosion resistance of dissimilar Al alloys welded by FSW. The aim of this study is to investigate the corrosion behavior of aluminum alloy 2024-T3 (AA2024-T3) welded to aluminum alloy 7475-T761 (AA7475-T761) by FSW. The evaluation was performed in 0.01 mol.L-1 by means of open circuit potential measurements, polarization techniques and surface observation after corrosion tests.


2012 ◽  
Vol 706-709 ◽  
pp. 1008-1013 ◽  
Author(s):  
J.D. Robson ◽  
L. Campbell

Friction stir welding is conceptually simple but metallurgically highly complex due to thecombination of severe deformation and high temperature. This is particularly true in the case ofprecipitation strengthened alloys, such as high strength aerospace aluminium alloys, where theheat and deformation of FSW lead to profound changes in both grain structure and precipitatedistribution that ultimately determine weld performance.


2020 ◽  
Vol 52 ◽  
pp. 263-269 ◽  
Author(s):  
Jianing Li ◽  
Molin Su ◽  
Wenjun Qi ◽  
Chen Wang ◽  
Peng Zhao ◽  
...  

2010 ◽  
Vol 638-642 ◽  
pp. 1185-1190 ◽  
Author(s):  
Hui Jie Liu ◽  
Li Zhou ◽  
Yong Xian Huang ◽  
Qi Wei Liu

As a new solid-state welding process, friction stir welding (FSW) has been successfully used for joining low melting point materials such as aluminum and magnesium alloys, but the FSW of high melting point materials such as steels and titanium alloys is still difficult to carry out because of their strict requirements for the FSW tool. Especially for the FSW of titanium alloys, some key technological issues need to solve further. In order to accomplish the FSW of titanium alloys, a specially designed tool system was made. The system was composed of W-Re pin tool, liquid cooling holder and shielding gas shroud. Prior to FSW, the Ti-6Al-4V alloy plates were thermo-hydrogen processed to reduce the deformation resistance and tool wear during the FSW. Based on this, the thermo-hydrogen processed Ti-6Al-4V alloy with different hydrogen content was friction stir welded, and the microstructural characterizations and mechanical properties of the joints were studied. Experimental results showed that the designed tool system can fulfill the requirements of the FSW of titanium alloys, and excellent weld formation and high-strength joint have been obtained from the titanium alloy plates.


Sign in / Sign up

Export Citation Format

Share Document