Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches

2021 ◽  
Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 411 ◽  
Author(s):  
Seongmin Heo ◽  
Jay H. Lee

In this article, the statistical process monitoring problem of the Tennessee Eastman process is considered using deep learning techniques. This work is motivated by three limitations of the existing works for such problem. First, although deep learning has been used for process monitoring extensively, in the majority of the existing works, the neural networks were trained in a supervised manner assuming that the normal/fault labels were available. However, this is not always the case in real applications. Thus, in this work, autoassociative neural networks are used, which are trained in an unsupervised fashion. Another limitation is that the typical dataset used for the monitoring of the Tennessee Eastman process is comprised of just a small number of data samples, which can be highly limiting for deep learning. The dataset used in this work is 500-times larger than the typically-used dataset and is large enough for deep learning. Lastly, an alternative neural network architecture, which is called parallel autoassociative neural networks, is proposed to decouple the training of different principal components. The proposed architecture is expected to address the co-adaptation issue of the fully-connected autoassociative neural networks. An extensive case study is designed and performed to evaluate the effects of the following neural network settings: neural network size, type of regularization, training objective function, and training epoch. The results are compared with those obtained using linear principal component analysis, and the advantages and limitations of the parallel autoassociative neural networks are illustrated.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Angelo Marcio Oliveira Sant’Anna

PurposeE-waste management can reduce relevant impact of the business activity without affecting reliability, quality or performance. Statistical process monitoring is an effective way for managing reliability and quality to devices in manufacturing processes. This paper proposes an approach for monitoring the proportion of e-waste devices based on Beta regression model and particle swarm optimization. A statistical process monitoring scheme integrating residual useful life techniques for efficient monitoring of e-waste components or equipment was developed.Design/methodology/approachAn approach integrating regression method and particle swarm optimization algorithm was developed for increasing the accuracy of regression model estimates. The control chart tools were used for monitoring the proportion of e-waste devices from fault detection of electronic devices in manufacturing process.FindingsThe results showed that the proposed statistical process monitoring was an excellent reliability and quality scheme for monitoring the proportion of e-waste devices in toner manufacturing process. The optimized regression model estimates showed a significant influence of the process variables for both individually injection rate and toner treads and the interactions between injection rate, toner treads, viscosity and density.Originality/valueThis research is different from others by providing an approach for modeling and monitoring the proportion of e-waste devices. Statistical process monitoring can be used to monitor waste product in manufacturing. Besides, the key contribution in this study is to develop different models for fault detection and identify any change point in the manufacturing process. The optimized model used can be replicated to other Electronic Industry and allows support of a satisfactory e-waste management.


Sign in / Sign up

Export Citation Format

Share Document