scholarly journals Statistical Process Monitoring of the Tennessee Eastman Process Using Parallel Autoassociative Neural Networks and a Large Dataset

Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 411 ◽  
Author(s):  
Seongmin Heo ◽  
Jay H. Lee

In this article, the statistical process monitoring problem of the Tennessee Eastman process is considered using deep learning techniques. This work is motivated by three limitations of the existing works for such problem. First, although deep learning has been used for process monitoring extensively, in the majority of the existing works, the neural networks were trained in a supervised manner assuming that the normal/fault labels were available. However, this is not always the case in real applications. Thus, in this work, autoassociative neural networks are used, which are trained in an unsupervised fashion. Another limitation is that the typical dataset used for the monitoring of the Tennessee Eastman process is comprised of just a small number of data samples, which can be highly limiting for deep learning. The dataset used in this work is 500-times larger than the typically-used dataset and is large enough for deep learning. Lastly, an alternative neural network architecture, which is called parallel autoassociative neural networks, is proposed to decouple the training of different principal components. The proposed architecture is expected to address the co-adaptation issue of the fully-connected autoassociative neural networks. An extensive case study is designed and performed to evaluate the effects of the following neural network settings: neural network size, type of regularization, training objective function, and training epoch. The results are compared with those obtained using linear principal component analysis, and the advantages and limitations of the parallel autoassociative neural networks are illustrated.

2011 ◽  
Vol 84-85 ◽  
pp. 110-114 ◽  
Author(s):  
Ying Hua Yang ◽  
Yong Lu Chen ◽  
Xiao Bo Chen ◽  
Shu Kai Qin

In this paper, an approach for multivariate statistical process monitoring ans fault diagnosis based on an improved independent component analysis (ICA) and continuous string matching (CSM) is presented, which can detect and diagnose process fault faster and with higher confidence level. The trial on the Tennessee Eastman process demonstrates that the proposed method can diagnose the fault effectively. Comparison of the method with the well established principal component analysis is also made.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6666
Author(s):  
Kamil Książek ◽  
Michał Romaszewski ◽  
Przemysław Głomb ◽  
Bartosz Grabowski ◽  
Michał Cholewa

In recent years, growing interest in deep learning neural networks has raised a question on how they can be used for effective processing of high-dimensional datasets produced by hyperspectral imaging (HSI). HSI, traditionally viewed as being within the scope of remote sensing, is used in non-invasive substance classification. One of the areas of potential application is forensic science, where substance classification on the scenes is important. An example problem from that area—blood stain classification—is a case study for the evaluation of methods that process hyperspectral data. To investigate the deep learning classification performance for this problem we have performed experiments on a dataset which has not been previously tested using this kind of model. This dataset consists of several images with blood and blood-like substances like ketchup, tomato concentrate, artificial blood, etc. To test both the classic approach to hyperspectral classification and a more realistic application-oriented scenario, we have prepared two different sets of experiments. In the first one, Hyperspectral Transductive Classification (HTC), both a training and a test set come from the same image. In the second one, Hyperspectral Inductive Classification (HIC), a test set is derived from a different image, which is more challenging for classifiers but more useful from the point of view of forensic investigators. We conducted the study using several architectures like 1D, 2D and 3D convolutional neural networks (CNN), a recurrent neural network (RNN) and a multilayer perceptron (MLP). The performance of the models was compared with baseline results of Support Vector Machine (SVM). We have also presented a model evaluation method based on t-SNE and confusion matrix analysis that allows us to detect and eliminate some cases of model undertraining. Our results show that in the transductive case, all models, including the MLP and the SVM, have comparative performance, with no clear advantage of deep learning models. The Overall Accuracy range across all models is 98–100% for the easier image set, and 74–94% for the more difficult one. However, in a more challenging inductive case, selected deep learning architectures offer a significant advantage; their best Overall Accuracy is in the range of 57–71%, improving the baseline set by the non-deep models by up to 9 percentage points. We have presented a detailed analysis of results and a discussion, including a summary of conclusions for each tested architecture. An analysis of per-class errors shows that the score for each class is highly model-dependent. Considering this and the fact that the best performing models come from two different architecture families (3D CNN and RNN), our results suggest that tailoring the deep neural network architecture to hyperspectral data is still an open problem.


2019 ◽  
Vol 42 (6) ◽  
pp. 1225-1238 ◽  
Author(s):  
Wahiba Bounoua ◽  
Amina B Benkara ◽  
Abdelmalek Kouadri ◽  
Azzeddine Bakdi

Principal component analysis (PCA) is a common tool in the literature and widely used for process monitoring and fault detection. Traditional PCA is associated with the two well-known control charts, the Hotelling’s T2 and the squared prediction error (SPE), as monitoring statistics. This paper develops the use of new measures based on a distribution dissimilarity technique named Kullback-Leibler divergence (KLD) through PCA by measuring the difference between online estimated and offline reference density functions. For processes with PCA scores following a multivariate Gaussian distribution, KLD is computed on both principal and residual subspaces defined by PCA in a moving window to extract the local disparity information. The potentials of the proposed algorithm are afterwards demonstrated through an application on two well-known processes in chemical industries; the Tennessee Eastman process as a reference benchmark and three tank system as an experimental validation. The monitoring performance was compared to recent results from other multivariate statistical process monitoring (MSPM) techniques. The proposed method showed superior robustness and effectiveness recording the lowest average missed detection rate and false alarm rates in process fault detection.


2021 ◽  
Vol 21 (S2) ◽  
Author(s):  
Xiaoming Yu ◽  
Yedan Shen ◽  
Yuan Ni ◽  
Xiaowei Huang ◽  
Xiaolong Wang ◽  
...  

Abstract Background Text Matching (TM) is a fundamental task of natural language processing widely used in many application systems such as information retrieval, automatic question answering, machine translation, dialogue system, reading comprehension, etc. In recent years, a large number of deep learning neural networks have been applied to TM, and have refreshed benchmarks of TM repeatedly. Among the deep learning neural networks, convolutional neural network (CNN) is one of the most popular networks, which suffers from difficulties in dealing with small samples and keeping relative structures of features. In this paper, we propose a novel deep learning architecture based on capsule network for TM, called CapsTM, where capsule network is a new type of neural network architecture proposed to address some of the short comings of CNN and shows great potential in many tasks. Methods CapsTM is a five-layer neural network, including an input layer, a representation layer, an aggregation layer, a capsule layer and a prediction layer. In CapsTM, two pieces of text are first individually converted into sequences of embeddings and are further transformed by a highway network in the input layer. Then, Bidirectional Long Short-Term Memory (BiLSTM) is used to represent each piece of text and attention-based interaction matrix is used to represent interactive information of the two pieces of text in the representation layer. Subsequently, the two kinds of representations are fused together by BiLSTM in the aggregation layer, and are further represented with capsules (vectors) in the capsule layer. Finally, the prediction layer is a connected network used for classification. CapsTM is an extension of ESIM by adding a capsule layer before the prediction layer. Results We construct a corpus of Chinese medical question matching, which contains 36,360 question pairs. This corpus is randomly split into three parts: a training set of 32,360 question pairs, a development set of 2000 question pairs and a test set of 2000 question pairs. On this corpus, we conduct a series of experiments to evaluate the proposed CapsTM and compare it with other state-of-the-art methods. CapsTM achieves the highest F-score of 0.8666. Conclusion The experimental results demonstrate that CapsTM is effective for Chinese medical question matching and outperforms other state-of-the-art methods for comparison.


Sign in / Sign up

Export Citation Format

Share Document