Nonlinear Behavior of Ceramic-Matrix Composites

2022 ◽  
2010 ◽  
Vol 20 (6) ◽  
pp. 939-957 ◽  
Author(s):  
Lionel Marcin ◽  
Jean-Francois Maire ◽  
Nicolas Carrère ◽  
Eric Martin

The aim of this article is to propose a macroscopic damage model, which describes the nonlinear behavior observed on woven composites with ceramic matrix. The model is built within a thermodynamic framework with internal variables. First of all, the efficiency of the model to describe the mechanical behavior of carbon fiber-reinforced ceramic matrix composites is outlined. Then, the predictive capability of the model is evaluated with the help of an alternate torsion test.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 889
Author(s):  
Jie Zhong ◽  
Dongling Yang ◽  
Shuangquan Guo ◽  
Xiaofeng Zhang ◽  
Xinghua Liang ◽  
...  

SiC fiber-reinforced SiC ceramic matrix composites (SiCf/SiC CMCs) are being increasingly used in the hot sections of gas turbines because of their light weight and mechanical properties at high temperatures. The objective of this investigation was the development of a thermal/environmental barrier coating (T/EBC) composite coating system consisting of an environmental barrier coating (EBC) to protect the ceramic matrix composites from chemical attack and a thermal barrier coating (TBC) that insulates and reduces the ceramic matrix composites substrate temperature for increased lifetime. In this paper, a plasma spray-physical vapor deposition (PS-PVD) method was used to prepare multilayer Si–HfO2/Yb2Si2O7/Yb2SiO5/Gd2Zr2O7 composite coatings on the surface of SiCf/SiC ceramic matrix composites. The purpose of this study is to develop a coating with resistance to high temperatures and chemical attack. Different process parameters are adopted, and their influence on the microstructure characteristics of the coating is discussed. The water quenching thermal cycle of the coating at high temperatures was tested. The results show that the structure of the thermal/environmental barrier composite coating changes after water quenching because point defects and dislocations appear in the Gd2Zr2O7 and Yb2SiO5 coatings. A phase transition was found to occur in the Yb2SiO5 and Yb2Si2O7 coatings. The failure mechanism of the T/EBC composite coating is mainly spalling when the top layer penetrates cracks and cracking occurs in the interface of the Si–HfO2/Yb2Si2O7 coating.


Sign in / Sign up

Export Citation Format

Share Document