scholarly journals Effects of inorganic carbon concentration and pH on carbonic anhydrase activity of gametophytes of Saccharina japonica

Author(s):  
Yan-Hui Bi ◽  
Cui-Ling Liang ◽  
Jia-Li Li ◽  
Hao Yin ◽  
Ruo-Tong Tian ◽  
...  
1998 ◽  
Vol 76 (6) ◽  
pp. 962-972 ◽  
Author(s):  
Dieter Sültemeyer

Carbonic anhydrase (CA) speeds up the equilibrium between CO2 and HCO3- at physiological pH values and has been detected in almost every species of the animal and plant kingdoms. Among eucaryotic micro- and macro-algae the enzyme is widely distributed and plays an important role in photosynthetic CO2 fixation. In some cases, different forms of carbonic anhydrases located extracellularly and intracellularly have been found to occur in the same cell. The expression of the genes encoding these CA isoforms are under the control of the inorganic carbon concentration in the medium, as the activities increase with decreasing the inorganic carbon content. Considerable progress has been made in recent years in isolating and characterizing the various forms of carbonic anhydrases on a biochemical and molecular level. Most of the data have been collected for microalgae like Chlamydomonas reinhardtii (Dangeard), while the situation in macroalgae is still descriptive. Therefore, this review summarizes the recent development with an emphasis on microalgae carbonic anhydrases.Key words: carbonic anhydrase, CO2 concentrating mechanism, macroalgae, microalgae, photosynthesis.


2000 ◽  
Vol 27 (12) ◽  
pp. 1161 ◽  
Author(s):  
Jesús R. Andría ◽  
Juan J. Vergara ◽  
J. Lucas Pérez-Lloréns

The presence of different carbonic anhydrase (EC 4.2.1.1) activities has been investigated in the intertidal macroalgae Gracilaria sp. and Enteromorpha intestinalis (L.) Nees by using fractionation techniques. Activities, measured potentiometrically, were recorded for all fractions in both species, including those containing proteins associated with chloroplast membranes. In Gracilaria sp., most of the total activity was present in the soluble fraction, while similar activities were obtained for all fractions in E. intestinalis. By using inhibitors with a different capacity to enter the cell (acetazolamide and 6-ethoxyzolamide, inhibitors of external and total activity, respectively), a surface-accessible location was indicated for a high proportion of the soluble activity obtained in Gracilaria sp. In E. intestinalis, the inhibitor assays showed a substantial dependence of photosynthesis on intracellular activity. The short-term regulation of the extracellular activity in response to inorganic carbon availability was also examined in both macroalgae. Rapid repression (after 2 h) of the activity was recorded when Gracilaria sp. was transferred from limited to replete carbon conditions, while a fairly constant activity was recorded for E. intestinalis. In contrast, an increase of external activity was obtained for both macroalgae after being transferred to carbon-limited conditions, this response being more pronounced in E. intestinalis. Our results suggest the occurrence of a species-specific carbonic anhydrase system.


Sign in / Sign up

Export Citation Format

Share Document