Validating a driving simulator using surrogate safety measures

2008 ◽  
Vol 40 (1) ◽  
pp. 274-288 ◽  
Author(s):  
Xuedong Yan ◽  
Mohamed Abdel-Aty ◽  
Essam Radwan ◽  
Xuesong Wang ◽  
Praveen Chilakapati
2021 ◽  
Vol 13 (17) ◽  
pp. 9681
Author(s):  
Matteo Miani ◽  
Matteo Dunnhofer ◽  
Christian Micheloni ◽  
Andrea Marini ◽  
Nicola Baldo

Improving pedestrian safety at urban intersections requires intelligent systems that should not only understand the actual vehicle–pedestrian (V2P) interaction state but also proactively anticipate the event’s future severity pattern. This paper presents a Gated Recurrent Unit-based system that aims to predict, up to 3 s ahead in time, the severity level of V2P encounters, depending on the current scene representation drawn from on-board radars’ data. A car-driving simulator experiment has been designed to collect sequential mobility features on a cohort of 65 licensed university students who faced different V2P conflicts on a planned urban route. To accurately describe the pedestrian safety condition during the encounter process, a combination of surrogate safety indicators, namely TAdv (Time Advantage) and T2 (Nearness of the Encroachment), are considered for modeling. Due to the nature of these indicators, multiple recurrent neural networks are trained to separately predict T2 continuous values and TAdv categories. Afterwards, their predictions are exploited to label serious conflict interactions. As a comparison, an additional Gated Recurrent Unit (GRU) neural network is developed to directly predict the severity level of inner-city encounters. The latter neural model reaches the best performance on the test set, scoring a recall value of 0.899. Based on selected threshold values, the presented models can be used to label pedestrians near accident events and to enhance existing intelligent driving systems.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5057
Author(s):  
Jacek Oskarbski ◽  
Tomasz Kamiński ◽  
Kyandoghere Kyamakya ◽  
Jean Chamberlain Chedjou ◽  
Karol Żarski ◽  
...  

Methods used to evaluate the impact of Intelligent Transport System (ITS) services on road safety are usually based on expert assessments or statistical studies. However, commonly used methods are challenging to apply in the planning process of ITS services. This paper presents the methodology of research using surrogate safety measures calculated and calibrated with the use of simulation techniques and a driving simulator. This approach supports the choice of the type of ITS services that are beneficial for traffic efficiency and road safety. This paper presents results of research on the influence of selected scenarios of variable speed limits on the efficiency and safety of traffic on the sections of motorways and expressways in various traffic conditions. The driving simulator was used to estimate the efficiency of lane-keeping by the driver. The simulation traffic models were calibrated using driving simulator data and roadside sensor data. The traffic models made it possible to determine surrogate safety measures (number of conflicts and their severity) in selected scenarios of using ITS services. The presented studies confirmed the positive impact of Variable Speed Limits (VSLs) on the level of road safety and traffic efficiency. This paper also presents recommendations and plans for further research in this area.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Eunhan Ka ◽  
Do-Gyeong Kim ◽  
Jooneui Hong ◽  
Chungwon Lee

Human errors cause approximately 90 percent of traffic accidents, and drivers with risky driving behaviors are involved in about 52 percent of severe traffic crashes. Driver education using driving simulators has been used extensively to obtain a quantitative evaluation of driving behaviors without causing drivers to be at risk for physical injuries. However, since many driver education programs that use simulators have limits on realistic interactions with surrounding vehicles, they are limited in reducing risky driving behaviors associated with surrounding vehicles. This study introduces surrogate safety measures (SSMs) into simulator-based training in order to evaluate the potential for crashes and to reduce risky driving behaviors in driving situations that include surrounding vehicles. A preliminary experiment was conducted with 31 drivers to analyze whether the SSMs could identify risky driving behaviors. The results showed that 15 SSMs were statistically significant measures to capture risky driving behaviors. This study used simulator-based training with 21 novice drivers, 16 elderly drivers, and 21 commercial drivers to determine whether a simulator-based training program using the SSMs is effective in reducing risky driving behaviors. The risky driving behaviors by novice drivers were reduced significantly with the exception of erratic lane-changing. In the case of elderly drivers, speeding was the only risky driving behavior that was reduced; the others were not reduced because of their difficulty with manipulating the pedals in the driving simulator and their defensive driving. Risky driving behaviors by commercial drivers were reduced overall. The results of this study indicated that the SSMs can be used to enhance drivers’ safety, to evaluate the safety of traffic management strategies as well as to reduce risky driving behaviors in simulator-based training.


Transport ◽  
2020 ◽  
Vol 35 (1) ◽  
pp. 48-56
Author(s):  
Sankaran Marisamynathan ◽  
Perumal Vedagiri

The large proportions of pedestrian fatalities led researchers to make the improvements of pedestrian safety at intersections. Thus, this paper proposes a methodology to evaluate crosswalk safety at signalized intersections using Surrogate Safety Measures (SSM) under mixed traffic conditions. The required pedestrian, traffic, and geometric data were extracted based on the videographic survey conducted at signalized intersections in Mumbai (India). Post Encroachment Time (PET) for each pedestrian were segregated into three categories for estimating pedestrian–vehicle interactions and Cumulative Frequency Distribution (CDF) was plotted to calculate the threshold values for each interaction severity level. The Cumulative Logistic Regression (CLR) model was developed to predict the pedestrian mean PET values in the cross-walk at signalized intersections. The proposed model was validated with a new signalized intersection and the results were shown that the proposed PET ranges and model appropriate for Indian mixed traffic conditions. To assess the suitability of model framework, model transferability was carried out with data collected at signalized intersection in Kolkata (India). Finally, this study can be helpful to rank the severity level of pedestrian safety in the crosswalk and improve the existing facilities at signalized intersections.


Sign in / Sign up

Export Citation Format

Share Document