scholarly journals Implementing Surrogate Safety Measures in Driving Simulator and Evaluating the Safety Effects of Simulator-Based Training on Risky Driving Behaviors

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Eunhan Ka ◽  
Do-Gyeong Kim ◽  
Jooneui Hong ◽  
Chungwon Lee

Human errors cause approximately 90 percent of traffic accidents, and drivers with risky driving behaviors are involved in about 52 percent of severe traffic crashes. Driver education using driving simulators has been used extensively to obtain a quantitative evaluation of driving behaviors without causing drivers to be at risk for physical injuries. However, since many driver education programs that use simulators have limits on realistic interactions with surrounding vehicles, they are limited in reducing risky driving behaviors associated with surrounding vehicles. This study introduces surrogate safety measures (SSMs) into simulator-based training in order to evaluate the potential for crashes and to reduce risky driving behaviors in driving situations that include surrounding vehicles. A preliminary experiment was conducted with 31 drivers to analyze whether the SSMs could identify risky driving behaviors. The results showed that 15 SSMs were statistically significant measures to capture risky driving behaviors. This study used simulator-based training with 21 novice drivers, 16 elderly drivers, and 21 commercial drivers to determine whether a simulator-based training program using the SSMs is effective in reducing risky driving behaviors. The risky driving behaviors by novice drivers were reduced significantly with the exception of erratic lane-changing. In the case of elderly drivers, speeding was the only risky driving behavior that was reduced; the others were not reduced because of their difficulty with manipulating the pedals in the driving simulator and their defensive driving. Risky driving behaviors by commercial drivers were reduced overall. The results of this study indicated that the SSMs can be used to enhance drivers’ safety, to evaluate the safety of traffic management strategies as well as to reduce risky driving behaviors in simulator-based training.

Author(s):  
Sheila G. Klauer ◽  
Tina B. Sayer ◽  
Peter Baynes ◽  
Gayatri Ankem

Introduction. Motor vehicle crashes remain the leading cause of fatalities among teens in the U.S. (National Center for Injury Prevention and Control, 2013). Prior research suggests that real-time and post hoc feedback can improve teen driver behavior. The Driver Coach Study (DCS) aimed to improve teens’ safe driving habits by providing them real-time feedback and post hoc feedback to a broader range of risky driving behaviors that have never been used in previous studies. Exposure data were also collected so that rates of risky driving behaviors over time could be assessed. Post hoc feedback, which included an electronic report card of risky driving behavior as well as video clips, was provided to both teens and parents via email and secure website link. Method. Ninety-two teen/parent dyads were recruited in southwest Virginia to have a data acquisition system (DAS) installed in their vehicles within two weeks of receiving their learner’s permit. Data were collected through the nine-month (minimum) learner’s permit phase plus seven months of provisional licensure. Feedback was only provided for the first six months of post licensure, then turned off to assess whether teenagers returned to unsafe driving behavior. Trained data coders reviewed 15 seconds of video surrounding each risky driving maneuver, and recorded driver errors such as poor vehicle control, poor speed selection, drowsiness, etc., for each event. Results. In this paper, the relationship between driver coaching and driver errors will be examined across the six-month feedback phase and also compared to the seventh month when feedback was turned off. Conclusions. This study has implications for the design of future monitoring and feedback systems, as it is currently unknown whether these devices can improve novice drivers’ crash rates.


2010 ◽  
Vol 69 (4) ◽  
pp. 233-238 ◽  
Author(s):  
Nolwenn Morisset ◽  
Florence Terrade ◽  
Alain Somat

Les recherches dans le domaine de la santé, et notamment en matière de conduite automobile, attestent que le jugement subjectif du risque (comparatif et absolu) et l’auto-efficacité perçue sont impliqués dans les comportements à risque. Cette étude avait pour objectif d’étudier l’influence de l’auto-efficacité perçue sur le jugement subjectif du risque, évalué au moyen d’une mesure indirecte, et de tester le rôle médiateur de ce facteur entre l’auto-efficacité perçue et les comportements auto-déclarés. Les participants, 90 hommes, lisaient deux scénarii décrivant les deux comportements les plus impliqués dans l’accidentologie: la vitesse et l’alcool au volant. Les résultats ne montrent pas de lien significatif entre l’auto-efficacité perçue et le score de jugement comparatif mais une relation significative avec les deux évaluations absolues du risque (autrui et soi). De plus, le jugement absolu du risque pour soi médiatise partiellement la relation entre auto-efficacité perçue et comportements auto-déclarés relatifs aux deux risques routiers étudiés.


Author(s):  
Chaopeng Tan ◽  
Nan Zhou ◽  
Fen Wang ◽  
Keshuang Tang ◽  
Yangbeibei Ji

At high-speed intersections in many Chinese cities, a traffic-light warning sequence at the end of the green phase—three seconds of flashing green followed by three seconds of yellow—is commonly implemented. Such a long phase transition time leads to heterogeneous decision-making by approaching drivers as to whether to pass the signal or stop. Therefore, risky driving behaviors such as red-light running, abrupt stop, and aggressive pass are more likely to occur at these intersections. Proactive identification of risky behaviors can facilitate mitigation of the dilemma zone and development of on-board safety altering strategies. In this study, a real-time vehicle trajectory prediction method is proposed to help identify risky behaviors during the signal phase transition. Two cases are considered and treated differently in the proposed method: a single vehicle case and a following vehicle case. The adaptive Kalman filter (KF) model and the K-nearest neighbor model are integrated to predict vehicle trajectories. The adaptive KF model and intelligent driver model are fused to predict the following vehicles’ trajectories. The proposed models are calibrated and validated using 1,281 vehicle trajectories collected at three high-speed intersections in Shanghai. Results indicate that the root mean square error between the predicted trajectories and the actual trajectories is 5.02 m for single vehicles and 2.33 m for following vehicles. The proposed method is further applied to predict risky behaviors, including red-light running, abrupt stop, aggressive pass, speeding pass, and aggressive following. The overall prediction accuracy is 95.1% for the single vehicle case and 96.2% for the following vehicle case.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Charles Marks ◽  
Arash Jahangiri ◽  
Sahar Ghanipoor Machiani

Every year, over 50 million people are injured and 1.35 million die in traffic accidents. Risky driving behaviors are responsible for over half of all fatal vehicle accidents. Identifying risky driving behaviors within real-world driving (RWD) datasets is a promising avenue to reduce the mortality burden associated with these unsafe behaviors, but numerous technical hurdles must be overcome to do so. Herein, we describe the implementation of a multistage process for classifying unlabeled RWD data as potentially risky or not. In the first stage, data are reformatted and reduced in preparation for classification. In the second stage, subsets of the reformatted data are labeled as potentially risky (or not) using the Iterative-DBSCAN method. In the third stage, the labeled subsets are then used to fit random forest (RF) classification models—RF models were chosen after they were found to be performing better than logistic regression and artificial neural network models. In the final stage, the RF models are used predictively to label the remaining RWD data as potentially risky (or not). The implementation of each stage is described and analyzed for the classification of RWD data from vehicles on public roads in Ann Arbor, Michigan. Overall, we identified 22.7 million observations of potentially risky driving out of 268.2 million observations. This study provides a novel approach for identifying potentially risky driving behaviors within RWD datasets. As such, this study represents an important step in the implementation of protocols designed to address and prevent the harms associated with risky driving.


2018 ◽  
Author(s):  
Chen Wang ◽  
Chengcheng Xu ◽  
Jingxin Xia ◽  
Zhendong Qian

Sign in / Sign up

Export Citation Format

Share Document