Vectors for recombinational cloning and gene expression in mammalian cells using modified vaccinia virus Ankara

2010 ◽  
Vol 404 (1) ◽  
pp. 103-105 ◽  
Author(s):  
Karine Pradeau-Aubreton ◽  
Marc Ruff ◽  
Jean-Marie Garnier ◽  
Patrick Schultz ◽  
Robert Drillien
2007 ◽  
Vol 56 (2) ◽  
pp. 269-278 ◽  
Author(s):  
Matthias Hebben ◽  
Jan Brants ◽  
Catherine Birck ◽  
Jean-Pierre Samama ◽  
Bohdan Wasylyk ◽  
...  

2004 ◽  
Vol 3 (10) ◽  
pp. 960-969 ◽  
Author(s):  
Qiang Tian ◽  
Serguei B. Stepaniants ◽  
Mao Mao ◽  
Lee Weng ◽  
Megan C. Feetham ◽  
...  

Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 414 ◽  
Author(s):  
María Q. Marín ◽  
Patricia Pérez ◽  
Carmen E. Gómez ◽  
Carlos Óscar S. Sorzano ◽  
Mariano Esteban ◽  
...  

Hepatitis C virus (HCV) represents a major global health problem for which a vaccine is not available. Modified vaccinia virus Ankara (MVA)-HCV is a unique HCV vaccine candidate based in the modified vaccinia virus Ankara (MVA) vector expressing the nearly full-length genome of HCV genotype 1a that elicits CD8+ T-cell responses in mice. With the aim to improve the immune response of MVA-HCV and because of the importance of interferon (IFN) in HCV infection, we deleted in MVA-HCV the vaccinia virus (VACV) C6L gene, encoding an inhibitor of IFN-β that prevents activation of the interferon regulatory factors 3 and 7 (IRF3 and IRF7). The resulting vaccine candidate (MVA-HCV ΔC6L) expresses all HCV antigens and deletion of C6L had no effect on viral growth in permissive chicken cells. In human monocyte-derived dendritic cells, infection with MVA-HCV ΔC6L triggered severe down-regulation of IFN-β, IFN-β-induced genes, and cytokines in a manner similar to MVA-HCV, as defined by real-time polymerase chain reaction (PCR) and microarray analysis. In infected mice, both vectors had a similar profile of recruited immune cells and induced comparable levels of adaptive and memory HCV-specific CD8+ T-cells, mainly against p7 + NS2 and NS3 HCV proteins, with a T cell effector memory (TEM) phenotype. Furthermore, antibodies against E2 were also induced. Overall, our findings showed that while these vectors had a profound inhibitory effect on gene expression of the host, they strongly elicited CD8+ T cell and humoral responses against HCV antigens and to the virus vector. These observations add support to the consideration of these vectors as potential vaccine candidates against HCV.


Sign in / Sign up

Export Citation Format

Share Document