The contribution of two disulfide bonds in the trypsin binding domain of horsegram (Dolichos biflorus) Bowman-Birk inhibitor to thermal stability and functionality

2013 ◽  
Vol 537 (1) ◽  
pp. 49-61 ◽  
Author(s):  
Vinod Kumar ◽  
Lalitha R. Gowda
Biochemistry ◽  
1993 ◽  
Vol 32 (30) ◽  
pp. 7759-7764 ◽  
Author(s):  
A. Sarai ◽  
H. Uedaira ◽  
H. Morii ◽  
T. Yasukawa ◽  
K. Ogata ◽  
...  

2021 ◽  
Vol 8 (11) ◽  
pp. 188
Author(s):  
Sirawit Ittisoponpisan ◽  
Itthipon Jeerapan

Glucose oxidase (GOx) holds considerable advantages for various applications. Nevertheless, the thermal instability of the enzyme remains a grand challenge, impeding the success in applications outside the well-controlled laboratories, particularly in practical bioelectronics. Many strategies to modify GOx to achieve better thermal stability have been proposed. However, modification of this enzyme by adding extra disulfide bonds is yet to be explored. This work describes the in silico bioengineering of GOx from Aspergillus niger by judiciously analyzing characteristics of disulfide bonds found in the Top8000 protein database, then scanning for amino acid residue pairs that are suitable to be replaced with cysteines in order to establish disulfide bonds. Next, we predicted and assessed the mutant GOx models in terms of disulfide bond quality (bond length and α angles), functional impact by means of residue conservation, and structural impact as indicated by Gibbs free energy. We found eight putative residue pairs that can be engineered to form disulfide bonds. Five of these are located in less conserved regions and, therefore, are unlikely to have a deleterious impact on functionality. Finally, two mutations, Pro149Cys and His158Cys, showed potential for stabilizing the protein structure as confirmed by a structure-based stability analysis tool. The findings in this study highlight the opportunity of using disulfide bond modification as a new alternative technique to enhance the thermal stability of GOx.


Blood ◽  
1993 ◽  
Vol 81 (7) ◽  
pp. 1778-1786
Author(s):  
KJ Winters ◽  
JJ Walsh ◽  
BG Rubin ◽  
SA Santoro

Divalent cation-dependent platelet adhesion to fibronectin (FN) is mediated by the integrin receptors alpha 5 beta 1 (GP Ic-IIa) and alpha IIb beta 3 (GP IIb-IIIa), which recognize the RGD (Arg-Gly-Asp) sequence in the cell-binding domain. However, FN can also support divalent cation-independent platelet adhesion. To determine which domain of FN mediates divalent cation-independent adhesion, proteolysis with thermolysin and affinity chromatography were used to isolate the cell-binding, gelatin-binding, and heparin-binding domains of FN. Unactivated and thrombin-activated platelets adhered to intact FN and the 45-Kd gelatin-binding domain in the presence of either Ca2+ or EDTA. Platelet spreading was mediated only by the 105-Kd cell-binding domain and required divalent cations. The heparin-binding domains did not support platelet adhesion. Reduction of intrachain disulfide bonds or removal of carbohydrate side chains on the gelatin-binding domain did not alter the ability to support platelet adhesion. Divalent cation- independent adhesion to the 45-Kd gelatin-binding domain was not inhibited by RGDS (Arg-Gly-Asp-Ser) synthetic peptides or monoclonal antibodies (MoAbs) directed against known platelet receptors. We conclude that platelets can adhere but not spread on the gelatin- binding domain of FN by a novel divalent cation-independent mechanism.


2021 ◽  
Author(s):  
Janani Prahlad ◽  
Lucas R. Struble ◽  
William E. Lutz ◽  
Savanna A. Wallin ◽  
Surender Khurana ◽  
...  

AbstractThe COVID-19 pandemic caused by SARS-CoV-2 has applied significant pressure on overtaxed healthcare around the world, underscoring the urgent need for rapid diagnosis and treatment. We have developed a bacterial strategy for the expression and purification of the SARS-CoV-2 spike protein receptor binding domain using the CyDisCo system to create and maintain the correct disulfide bonds for protein integrity and functionality. We show that it is possible to quickly and inexpensively produce functional, active antigen in bacteria capable of recognizing and binding to the ACE2 (angiotensin-converting enzyme) receptor as well as antibodies in COVID-19 patient sera.


Blood ◽  
1993 ◽  
Vol 81 (7) ◽  
pp. 1778-1786 ◽  
Author(s):  
KJ Winters ◽  
JJ Walsh ◽  
BG Rubin ◽  
SA Santoro

Abstract Divalent cation-dependent platelet adhesion to fibronectin (FN) is mediated by the integrin receptors alpha 5 beta 1 (GP Ic-IIa) and alpha IIb beta 3 (GP IIb-IIIa), which recognize the RGD (Arg-Gly-Asp) sequence in the cell-binding domain. However, FN can also support divalent cation-independent platelet adhesion. To determine which domain of FN mediates divalent cation-independent adhesion, proteolysis with thermolysin and affinity chromatography were used to isolate the cell-binding, gelatin-binding, and heparin-binding domains of FN. Unactivated and thrombin-activated platelets adhered to intact FN and the 45-Kd gelatin-binding domain in the presence of either Ca2+ or EDTA. Platelet spreading was mediated only by the 105-Kd cell-binding domain and required divalent cations. The heparin-binding domains did not support platelet adhesion. Reduction of intrachain disulfide bonds or removal of carbohydrate side chains on the gelatin-binding domain did not alter the ability to support platelet adhesion. Divalent cation- independent adhesion to the 45-Kd gelatin-binding domain was not inhibited by RGDS (Arg-Gly-Asp-Ser) synthetic peptides or monoclonal antibodies (MoAbs) directed against known platelet receptors. We conclude that platelets can adhere but not spread on the gelatin- binding domain of FN by a novel divalent cation-independent mechanism.


Sign in / Sign up

Export Citation Format

Share Document