Application of the interface equilibria-triggered dynamic diffusion model of the boundary potential for the numerical simulation of neutral carrier-based ion-selective electrodes response

2018 ◽  
Vol 1043 ◽  
pp. 20-27 ◽  
Author(s):  
Vladimir V. Egorov ◽  
Andrei D. Novakovskii
2015 ◽  
Vol 87 (17) ◽  
pp. 8665-8672 ◽  
Author(s):  
Jerzy J. Jasielec ◽  
Tomasz Sokalski ◽  
Robert Filipek ◽  
Andrzej Lewenstam

2013 ◽  
Vol 807-809 ◽  
pp. 628-631
Author(s):  
Xiao Yong Peng ◽  
Xin Zhang ◽  
Shuai Huang ◽  
Xu Sheng Chai ◽  
Lan Xia Guo

with a flat ground uranium tailings impoundment as the object of the paper, CFD technology was used to study the atmospheric dynamic diffusion characteristics and the evolution of time and space distribution of radon in the uranium tailings impoundment. Results show that, within 1500m range of the leeward of uranium tailings impoundment the falling gradient of radon mass fraction improves with distance increases at the same moment, however the falling gradient flattens with the increase of time gradually; During the first 30 minutes, the radon mass fraction of tailings impoundment in the leeward direction has a larger growth gradient, then flattens out slowly, and stabilizes after 75 minutes.


2016 ◽  
Vol 791 ◽  
pp. 34-60 ◽  
Author(s):  
R. V. Morgan ◽  
O. A. Likhachev ◽  
J. W. Jacobs

Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order of $1000g_{0}$, where $g_{0}$ is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duff et al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duff et al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a $1/k^{2}$ decay in growth rates as $k\rightarrow \infty$ for large-wavenumber perturbations.


2003 ◽  
Vol 75 (9) ◽  
pp. 2131-2139 ◽  
Author(s):  
Shane Peper ◽  
Yu Qin ◽  
Philip Almond ◽  
Michael McKee ◽  
Martin Telting-Diaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document