Rapid synthesis of Au/Ag bimetallic nanoclusters with highly biochemical stability and its applications for temperature and ratiometric pH sensing

2019 ◽  
Vol 1070 ◽  
pp. 88-96 ◽  
Author(s):  
Huanhuan Sun ◽  
Taiping Qing ◽  
Xiaoxiao He ◽  
Jingfang Shangguan ◽  
Ruichen Jia ◽  
...  
2015 ◽  
Vol 51 (28) ◽  
pp. 6145-6148 ◽  
Author(s):  
Robert J. Meier ◽  
Johann M. B. Simbürger ◽  
Tero Soukka ◽  
Michael Schäferling

A FRET system composed of a europium chelate and carboxynaphthofluorescein enables ratiometric pH sensing with an exceptionally broad dynamic range.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6747
Author(s):  
Beatričė Razmienė ◽  
Eva Řezníčková ◽  
Vaida Dambrauskienė ◽  
Radek Ostruszka ◽  
Martin Kubala ◽  
...  

A library of 2,4,6,7-tetrasubstituted-2H-pyrazolo[4,3-c]pyridines was prepared from easily accessible 1-phenyl-3-(2-phenylethynyl)-1H-pyrazole-4-carbaldehyde via an iodine-mediated electrophilic cyclization of intermediate 4-(azidomethyl)-1-phenyl-3-(phenylethynyl)-1H-pyrazoles to 7-iodo-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridines followed by Suzuki cross-couplings with various boronic acids and alkylation reactions. The compounds were evaluated for their antiproliferative activity against K562, MV4-11, and MCF-7 cancer cell lines. The most potent compounds displayed low micromolar GI50 values. 4-(2,6-Diphenyl-2H-pyrazolo[4,3-c]pyridin-7-yl)phenol proved to be the most active, induced poly(ADP-ribose) polymerase 1 (PARP-1) cleavage, activated the initiator enzyme of apoptotic cascade caspase 9, induced a fragmentation of microtubule-associated protein 1-light chain 3 (LC3), and reduced the expression levels of proliferating cell nuclear antigen (PCNA). The obtained results suggest a complex action of 4-(2,6-diphenyl-2H-pyrazolo[4,3-c]pyridin-7-yl)phenol that combines antiproliferative effects with the induction of cell death. Moreover, investigations of the fluorescence properties of the final compounds revealed 7-(4-methoxyphenyl)-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridine as the most potent pH indicator that enables both fluorescence intensity-based and ratiometric pH sensing.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2923
Author(s):  
Piaopiao Chen ◽  
Iqra Ilyas ◽  
Su He ◽  
Yichen Xing ◽  
Zhigang Jin ◽  
...  

Polymer dots (Pdots) represent newly developed semiconductor polymer nanoparticles and exhibit excellent characteristics as fluorescent probes. To improve the sensitivity and biocompatibility of Pdots ratiometric pH biosensors, we synthesized 3 types of water-soluble Pdots: Pdots-PF, Pdots-PP, and Pdots-PPF by different combinations of fluorescent dyes poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO), poly[(9,9-dioctyl-fluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1′,3}-thiadazole)] (PFBT), and fluorescein isothiocyanate (FITC). We found that Pdots-PPF exhibits optimal performance on pH sensing. PFO and FITC in Pdots-PPF produce pH-insensitive (λ = 439 nm) and pH-sensitive (λ = 517 nm) fluorescence respectively upon a single excitation at 380 nm wavelength, which enables Pdots-PPF ratiometric pH sensing ability. Förster resonance energy transfer (FRET) together with the use of PFBT amplify the FITC signal, which enables Pdots-PPF robust sensitivity to pH. The emission intensity ratio (I517/I439) of Pdots-PPF changes linearly as a function of pH within the range of pH 3.0 to 8.0. Pdots-PPF also possesses desirable reversibility and stability in pH measurement. More importantly, Pdots-PPF was successfully used for cell imaging in Hela cells, exhibiting effective cellular uptake and low cytotoxicity. Our study suggests the promising potential of Pdots-PPF as an in vivo biomarker.


2018 ◽  
Vol 10 (2) ◽  
pp. 1556-1565 ◽  
Author(s):  
Fengyu Su ◽  
Shubhangi Agarwal ◽  
Tingting Pan ◽  
Yuan Qiao ◽  
Liqiang Zhang ◽  
...  

2006 ◽  
Vol 18 (15) ◽  
pp. 3381-3384 ◽  
Author(s):  
Honghao Sun ◽  
Anne Marie Scharff-Poulsen ◽  
Hong Gu ◽  
Kristoffer Almdal

2011 ◽  
Vol 22 (41) ◽  
pp. 415501 ◽  
Author(s):  
Alejandro Lapresta-Fernández ◽  
Tristan Doussineau ◽  
Silvio Dutz ◽  
Frank Steiniger ◽  
Artur J Moro ◽  
...  

Author(s):  
Nikolai I. Georgiev ◽  
Abdullah M. Asiri ◽  
Khalid A. Alamry ◽  
Abdullah Y. Obaid ◽  
Vladimir B. Bojinov

2020 ◽  
Author(s):  
Yujie Tu ◽  
Yeqing Yu ◽  
Diwen Xiao ◽  
Junkai Liu ◽  
zheng zhao ◽  
...  

<p>Intelligent stimulus-response (S/R) systems are the basis of natural process and machine control, and have been intensively explored in biomimetic design, analytical chemistry and biological applications. However, nonmonotonic multi-S/R systems are still rarely studied so far. Now, we propose a rational design strategy to achieve such a unique S/R system by integrating opposite luminescence behaviors in one molecule. When solvent polarity increases, many heterocycles often become more emissive due to the suppression of the proximity effect. However, molecules with donor-acceptor (D-A) structures tend to be less emissive because of the twisted intramolecular charge transfer. Meanwhile, protonation on D/A moieties will weaken/strengthen the D-A interaction to result in blue/red-shifted emissions. By combining a protonatable heterocyclic acceptor and a protonatable donor together in one molecule, we can easily achieve nonmonotonic brightness responses to polarity stimuli and nonmonotonic color responses to pH stimuli. In this work, a simple molecule, namely ASQ is chosen as the model compound to verify the design strategy feasibility. It successfully shows two opposite trends of responses to polarity and pH stimuli, and aggregation-induced emission (AIE) with a nonmonotonic AIE curve. Moreover, the acidified ASQ solution is also a pure organic up-conversion and white-light-emitting system. A new mechanistic viewpoint is established to explain its unique anti-Stokes emission. Besides, ASQ shows multivalent functionalities including albumin protein sensing, ratiometric pH sensing, and amine gas sensing, etc. Therefore, ASQ is proved to be a fundamentally important and versatile functional “intelligent” AIE luminogen with nonmonotonic multi-responses to multi-stimuli. <br></p>


Sign in / Sign up

Export Citation Format

Share Document