Analytical modelling of functionally graded NiTi shape memory alloy plates under tensile loading and recovery of deformation upon heating

2013 ◽  
Vol 61 (9) ◽  
pp. 3411-3421 ◽  
Author(s):  
B.S. Shariat ◽  
Y. Liu ◽  
Q. Meng ◽  
G. Rio
2011 ◽  
Vol 172-174 ◽  
pp. 37-42 ◽  
Author(s):  
Yong Jun He ◽  
Qing Ping Sun

High damping capacity is one of the prominent properties of NiTi shape memory alloy (SMA), having applications in many engineering devices to reduce unwanted vibrations. Recent experiments demonstrated that, the hysteresis loop of the stress-strain curve of a NiTi strip/wire under a tensile loading-unloading cycle changed non-monotonically with the loading rate, i.e., a maximum damping capacity was obtained at an intermediate strain rate (ε.critical). This rate dependence is due to the coupling between the temperature dependence of material’s transformation stresses, latent-heat release/absorption in the forward/reverse phase transition and the associated heat exchange between the specimen and the environment. In this paper, a simple analytical model was developed to quantify these thermo-mechanical coupling effects on the damping capacity of the NiTi strips/wires under the tensile loading-unloading cycle. We found that, besides the material thermal/mechanical properties and specimen geometry, environmental condition also affects the damping capacity; and the critical strain rate ε.criticalfor achieving a maximum damping capacity can be changed by varying the environmental condition. The theoretical predictions agree quantitatively with the experiments.


2017 ◽  
Vol 10 (01) ◽  
pp. 1740011 ◽  
Author(s):  
Reza Bakhtiari ◽  
Bashir S. Shariat ◽  
Fakhrodin Motazedian ◽  
Zhigang Wu ◽  
Junsong Zhang ◽  
...  

Owing to geometrical non-uniformity, geometrically graded shape memory alloy (SMA) structures by design have the ability to exhibit different and novel thermal and mechanical behaviors compared to geometrically uniform conventional SMAs. This paper reports a study of the pseudoelastic behavior of geometrically graded NiTi plates. This geometrical gradient creates partial stress gradient over stress-induced martensitic transformation, providing enlarged stress controlling interval for shape memory actuation. Finite element modeling framework has been established to predict the deformation behavior of such structures in tensile loading cycles, which was validated by experiments. The modeling results show that the transformation mostly propagates along the gradient direction as the loading level increases.


2019 ◽  
Vol 5 (4) ◽  
pp. 457-467 ◽  
Author(s):  
Francisco M. Braz Fernandes ◽  
Edgar Camacho ◽  
Patrícia F. Rodrigues ◽  
Patrick Inácio ◽  
Telmo G. Santos ◽  
...  

2020 ◽  
Vol 1 (01) ◽  
pp. 40-47
Author(s):  
Aissa Bouaissi ◽  
Nabaa S Radhi ◽  
Karrar F. Morad ◽  
Mohammad H. Hafiz ◽  
Alaa Abdulhasan Atiyah

Shape Memory Alloys (SMAs) are one of the most hopeful smart materials, especially, Nickel–Titanium (NiTi or Nitinol). These alloys are great and desirable due to their excellent reliability and behavior among all the commercially available alloys. In addition, strain recovery, (Ni–Ti) is granulated for a wide variety of medical uses because of its favorite properties such as fatigue behavior, corrosion resistance and biocompatibility. This paper explores the creation and the characterization of functionally graded (NiTi) materials. This work demonstrations the impact of Nickel contains changes on the characteristics of NiTi shape memory alloy, in order to obtain the suitable addition of Nickel contain, which gives the optimal balance between hardness, start and finish martensitic point, shape recovery and shape effect of alloys properties. These materials are prepared to obtain suddenly or gradually microstructure or composition differences inside the structure of one piece of material, the specimens made by powder metallurgy process and the influence of every layer of composite by; micro-hardness, transformation temperature DSC and shape effect. The hardness value and shape recovery decrease with increase nickel content. superior shape memory effect (SME) and shape recovery (SR) properties (i.e., 8.747, 10.270 for SMA-FGM1 SMA-FGM2 respectively, and SR is 1.735, 2.977 for SMA-FGM1 SMA-FGM2) respectively.  


Author(s):  
Bo Zhou ◽  
Zetian Kang ◽  
Xiao Ma ◽  
Shifeng Xue

This paper focuses on the size-dependent behaviors of functionally graded shape memory alloy (FG-SMA) microbeams based on the Bernoulli-Euler beam theory. It is taken into consideration that material properties, such as austenitic elastic modulus, martensitic elastic modulus and critical transformation stresses vary continuously along the longitudinal direction. According to the simplified linear shape memory alloy (SMA) constitutive equations and nonlocal strain gradient theory, the mechanical model was established via the principle of virtual work. Employing the Galerkin method, the governing differential equations were numerically solved. The functionally graded effect, nonlocal effect and size effect of the mechanical behaviors of the FG-SMA microbeam were numerically simulated and discussed. Results indicate that the mechanical behaviors of FG-SMA microbeams are distinctly size-dependent only when the ratio of material length scale parameter to the microbeam height is small enough. Both the increments of material nonlocal parameter and ratio of material length-scale parameter to the microbeam height all make the FG-SMA microbeam become softer. However, the stiffness increases with the increment of FG parameter. The FG parameter plays an important role in controlling the transverse deformation of the FG-SMA microbeam. This work can provide a theoretical basis for the design and application of FG-SMA microstructures.


Sign in / Sign up

Export Citation Format

Share Document