scholarly journals Nature of gallium focused ion beam induced phase transformation in 316L austenitic stainless steel

2016 ◽  
Vol 120 ◽  
pp. 391-402 ◽  
Author(s):  
R. Prasath Babu ◽  
S. Irukuvarghula ◽  
A. Harte ◽  
M. Preuss
2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Lucia Rozumová ◽  
Lukáš Košek ◽  
Jan Vít ◽  
Anna Hojná ◽  
Patricie Halodová

Abstract Development of liquid lead cooled nuclear systems requires consideration of compatibility issues with the construction materials. In order to understand the corrosion or passivation behavior of the 316 L austenitic stainless steel, the steel specimens were exposed for 1000 h in liquid lead with 1 × 10−7 wt % oxygen level at 480 °C in static and flowing (velocity 1.6 m/s) conditions. Post-test microscopy investigation using scanning electron microscope with focused ion beam (FIB) was performed and it demonstrated significant differences in the formation of thin oxide layers in the two conditions. Maximum oxide thickness was 2 μm in the static lead (Pb) and less than 0.1 μm in the flowing Pb. In the static condition, oxide scale was not continuous and local corrosion attack was indicated; but in flowing condition the oxide layer was continuous without any corrosion attacks.


2009 ◽  
Vol 24 (2) ◽  
pp. 565-573 ◽  
Author(s):  
E. Menéndez ◽  
J. Sort ◽  
M.O. Liedke ◽  
J. Fassbender ◽  
S. Suriñach ◽  
...  

The strain-induced austenite (γ) to martensite (α′) transformation in AISI 316L austenitic stainless steel, either in powders or bulk specimens, has been investigated. The phase transformation is accomplished using either ball-milling processes (in powders)—dynamic approach—or by uniaxial compression procedures (in bulk specimens)—quasi-static approach. Remarkably, an increase in the loading rate causes opposite effects in each case: (i) it increases the amount of transformed α′ in ball-milling procedures, but (ii) it decreases the amount of α′ in pressed samples. Both the microstructural changes (e.g., crystallite size refinement, microstrains, or type of stacking faults) in the parent γ phase and the role of the concomitant temperature rise during deformation seem to be responsible for these opposite trends. Furthermore, the results show the correlation between the γ → α′ phase transformation and the development of magnetism and enhanced hardness.


2019 ◽  
Vol 166 (11) ◽  
pp. C3376-C3388 ◽  
Author(s):  
Zuocheng Wang ◽  
Francesco Di-Franco ◽  
Antoine Seyeux ◽  
Sandrine Zanna ◽  
Vincent Maurice ◽  
...  

Ceramics ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 568-577 ◽  
Author(s):  
Frigan ◽  
Chevalier ◽  
Zhang ◽  
Spies

The market share of zirconia (ZrO2) dental implants is steadily increasing. This material comprises a polymorphous character with three temperature-dependent crystalline structures, namely monoclinic (m), tetragonal (t) and cubic (c) phases. Special attention is given to the tetragonal phase when maintained in a metastable state at room temperature. Metastable tetragonal grains allow for the beneficial phenomenon of Phase Transformation Toughening (PTT), resulting in a high fracture resistance, but may lead to an undesired surface transformation to the monoclinic phase in a humid environment (low-temperature degradation, LTD, often referred to as ‘ageing’). Today, the clinical safety of zirconia dental implants by means of long-term stability is being addressed by two international ISO standards. These standards impose different experimental setups concerning the dynamic fatigue resistance of the final product (ISO 14801) or the ageing behavior of a standardized sample (ISO 13356) separately. However, when evaluating zirconia dental implants pre-clinically, oral environmental conditions should be simulated to the extent possible by combining a hydrothermal treatment and dynamic fatigue. For failure analysis, phase transformation might be quantified by non-destructive techniques, such as X-Ray Diffraction (XRD) or Raman spectroscopy, whereas Scanning Electron Microscopy (SEM) of cross-sections or Focused Ion Beam (FIB) sections might be used for visualization of the monoclinic layer growth in depth. Finally, a minimum load should be defined for static loading to fracture. The purpose of this communication is to contribute to the current discussion on how to optimize the aforementioned standards in order to guarantee clinical safety for the patients.


Sign in / Sign up

Export Citation Format

Share Document