Ultrahigh-strength AISI-316 austenitic stainless steel foils through concentrated interstitial carbon

2019 ◽  
Vol 167 ◽  
pp. 231-240 ◽  
Author(s):  
Z. Ren ◽  
A.H. Heuer ◽  
F. Ernst
2011 ◽  
Vol 462-463 ◽  
pp. 906-911 ◽  
Author(s):  
Hassan Osman ◽  
Mohd Nasir Tamin

Creep deformation process of austenitic stainless steel foil with thickness 0.25 mm was investigated. The foil specimen was creep tested at 750oC, 54 MPa to establish baseline behavior for its extended use as primary surface recuperator in advanced microturbine. The creep curve of the foil shows that the primary creep stage is brief and creep life is dominated by tertiary creep deformation. The curve is well represented by the modified theta-projection concept model with hardening and softening terms. Morphology of fractured foil surface reveals intergranular fracture with shallow network of faceted voids. The formation of w-type creep cavities is significant, as revealed by microstructure of ruptured specimen. Composition analysis indicates the formation of carbides, namely, Cr23C6, NbC and Fe3Nb3C.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 38
Author(s):  
Matthias Weiss ◽  
Peng Zhang ◽  
Michael P. Pereira ◽  
Bernard F. Rolfe ◽  
Daniel E. Wilkosz ◽  
...  

This study investigates the effect of grain size and composition on the material properties and forming limits of commercially supplied stainless steel foil for bipolar plate manufacture via tensile, stretch forming and micro-stamping trials. It is shown that in commercially supplied stainless steel the grain size can vary significantly and that ‘size effects’ can be influenced by prior steel processing and composition effects. While the forming limits in micro-stamping appear to be directly linked to the plane strain forming limits of the individual stainless steel alloys, there was a clear effect of the tensile anisotropy. In contrast to previous studies, forming severity and the likelihood of material failure did not increase with a decreasing channel profile radius. This was related to inaccuracies of the forming tool profile shape.


Sign in / Sign up

Export Citation Format

Share Document