Solute enrichment induced dendritic fragmentation in directional solidification of nickel-based superalloys

2021 ◽  
pp. 117043
Author(s):  
Neng Ren ◽  
Chinnapat Panwisawas ◽  
Jun Li ◽  
Mingxu Xia ◽  
Hongbiao Dong ◽  
...  
2021 ◽  
pp. 339-339
Author(s):  
Jiajun Cui ◽  
Baokuan Li ◽  
Zhongqiu Liu ◽  
Fengsheng Qi ◽  
Beijiang Zhang

In order to investigate the solute distribution and freckles formation during directional solidification of superalloy ingots, a mathematical model with coupled solution of flow field, solute and temperature distribution was developed. Meanwhile, the reliability of this model was verified by the experimental and simulation results in relevant literatures. The three-dimensional directional solidification process of Ni-5.8wt%Al-15.2wt%Ta superalloy ingot was simulated, and then the dynamic growth of solute enrichment channels was demonstrated inside the ingot. Freckles formation under different cooling rates was studied, and the local segregation degree inside the ingot was obtained innovatively after solidification. The results show that the number of freckles formed at the top gradually decreases, and so do the degree of solute enrichment at these freckles with the increase of cooling rate. Moreover, the relative and volume-averaged segregation ratio is defined to describe the segregation degree inside the ingot. The span of relative segregation ratio for positive segregation is wider than that for negative segregation, but it accounts for less of total volume. As the cooling rate increases from 0.1 K/s to 1.0 K/s, the proportion of weak segregation (-20%~20%) increases significantly from 26% to 41%, so that the segregation degree is weakened in general. By analyzing the freckles formation and segregation degree inside the ingot, the numerical simulation results can provide a theoretical basis for optimizing the actual production process to suppress the freckle defects.


2007 ◽  
Vol 55 (13) ◽  
pp. 4287-4292 ◽  
Author(s):  
D. Ruvalcaba ◽  
R.H. Mathiesen ◽  
D.G. Eskin ◽  
L. Arnberg ◽  
L. Katgerman

Author(s):  
H.J. Zuo ◽  
M.W. Price ◽  
R.D. Griffin ◽  
R.A. Andrews ◽  
G.M. Janowski

The II-VI semiconducting alloys, such as mercury zinc telluride (MZT), have become the materials of choice for numerous infrared detection applications. However, compositional inhomogeneities and crystallographic imperfections adversly affect the performance of MZT infrared detectors. One source of imperfections in MZT is gravity-induced convection during directional solidification. Crystal growth experiments conducted in space should minimize gravity-induced convection and thereby the density of related crystallographic defects. The limited amount of time available during Space Shuttle experiments and the need for a sample of uniform composition requires the elimination of the initial composition transient which occurs in directionally solidified alloys. One method of eluding this initial transient involves directionally solidifying a portion of the sample and then quenching the remainder prior to the space experiment. During the space experiment, the MZT sample is back-melted to exactly the point at which directional solidification was stopped on earth. The directional solidification process then continues.


Author(s):  
Victoria Timchenko ◽  
P. Y. P. Chen ◽  
Graham de Vahl Davis ◽  
Eddie Leonardi

Sign in / Sign up

Export Citation Format

Share Document