scholarly journals Understanding the role of local texture variation on slip activity in a two-phase titanium alloy

2021 ◽  
pp. 117111
Author(s):  
D. Lunt ◽  
R. Thomas ◽  
M.D. Atkinson ◽  
A. Smith ◽  
R. Sandala ◽  
...  
2020 ◽  
Author(s):  
D. Lunt ◽  
R. Thomas ◽  
M.D. Atkinson ◽  
A. Smith ◽  
Rebecca Sandala ◽  
...  

2019 ◽  
Vol 795 ◽  
pp. 151-162 ◽  
Author(s):  
Faisal Waqar Syed ◽  
V. Anil Kumar ◽  
Rohit Kumar Gupta ◽  
Anand K. Kanjarla

2020 ◽  
pp. 130-135
Author(s):  
D.N. Korotaev ◽  
K.N. Poleshchenko ◽  
E.N. Eremin ◽  
E.E. Tarasov

The wear resistance and wear characteristics of cluster-gradient architecture (CGA) nanostructured topocomposites are studied. The specifics of tribocontact interaction under microcutting conditions is considered. The reasons for retention of high wear resistance of this class of nanostructured topocomposites are studied. The mechanisms of energy dissipation from the tribocontact zone, due to the nanogeometry and the structural-phase structure of CGA topocomposites are analyzed. The role of triboactivated deformation and diffusion processes in providing increased wear resistance of carbide-based topocomposites is shown. They are tested under the conditions of blade processing of heat-resistant titanium alloy.


2012 ◽  
Author(s):  
Ellen Cerreta ◽  
Saryu Fensin ◽  
Juan P. Escobedo ◽  
George Thompson Gray III ◽  
Adam Farrow ◽  
...  
Keyword(s):  

1996 ◽  
Vol 2 (3) ◽  
pp. 113-128 ◽  
Author(s):  
Sundar Ramamurthy ◽  
Michael P. Mallamaci ◽  
Catherine M. Zimmerman ◽  
C. Barry Carter ◽  
Peter R. Duncombe ◽  
...  

Dense, polycrystalline MgO was infiltrated with monticellite (CaMgSiO4) liquid to study the penetration of liquid along the grain boundaries of MgO. Grain growth was found to be restricted with increasing amounts of liquid. The inter-granular regions were generally found to be comprised of a two-phase mixture: crystalline monticellite and a glassy phase rich in the impurities present in the starting MgO material. MgO grains act as seeding agents for the crystallization of monticellite. The location and composition of the glassy phase with respect to the MgO grains emphasizes the role of intergranular liquid during the devitrification process in “snowplowing” impurities present in the matrix.


2016 ◽  
Vol 25 (3) ◽  
pp. 734-743 ◽  
Author(s):  
Jianwei Xu ◽  
Weidong Zeng ◽  
Zhiqiang Jia ◽  
Xin Sun ◽  
Yawei Zhao

2017 ◽  
Vol 27 (1) ◽  
pp. 172-183 ◽  
Author(s):  
K.K. SAXENA ◽  
S.K. JHA ◽  
V. PANCHOLI ◽  
G.P. CHAUDHARI ◽  
D. SRIVASTAVA ◽  
...  

2021 ◽  
Author(s):  
Rogert Sorí ◽  
Raquel Nieto ◽  
Margarida L.R. Liberato ◽  
Luis Gimeno

<p>The regional and global precipitation pattern is highly modulated by the influence of El Niño Southern Oscillation (ENSO), which is considered the most important mode of climate variability on the planet. In this study was investigated the asymmetry of the continental precipitation anomalies during El Niño and La Niña. To do it, a Lagrangian approach already validated was used to determine the proportion of the total Lagrangian precipitation that is of oceanic and terrestrial origin. During both, El Niño and La Niña, the Lagrangian precipitation in regions such as the northeast of South America, the east and west coast of North America, Europe, the south of West Africa, Southeast Asia, and Oceania is generally determined by the oceanic component of the precipitation, while that from terrestrial origin provides a major percentage of the average Lagrangian precipitation towards the interior of the continents. The role of the moisture contribution to precipitation from terrestrial and oceanic origin was evaluated in regions with statistically significant precipitation anomalies during El Niño and La Niña. Two-phase asymmetric behavior of the precipitation was found in regions such the northeast of South America, South Africa, the north of Mexico, and southeast of the United States, etc. principally for December-January-February and June-July-August. For some of these regions was also calculated the anomalies of the precipitation from other datasets to confirm the changes. Besides, for these regions was calculated the anomaly of the Lagrangian precipitation, which agrees in all the cases with the precipitation change. For these regions, it was determined which component of the Lagrangian precipitation, whether oceanic or terrestrial, controlled the precipitation anomalies. A schematic figure represents the extent of the most important seasonal oceanic and terrestrial sources for each subregion during El Niño and La Niña.</p>


Sign in / Sign up

Export Citation Format

Share Document