Anomalies of continental precipitation associated with El Niño Southern Oscillation: the role of moisture contribution from oceanic and terrestrial sources 

Author(s):  
Rogert Sorí ◽  
Raquel Nieto ◽  
Margarida L.R. Liberato ◽  
Luis Gimeno

<p>The regional and global precipitation pattern is highly modulated by the influence of El Niño Southern Oscillation (ENSO), which is considered the most important mode of climate variability on the planet. In this study was investigated the asymmetry of the continental precipitation anomalies during El Niño and La Niña. To do it, a Lagrangian approach already validated was used to determine the proportion of the total Lagrangian precipitation that is of oceanic and terrestrial origin. During both, El Niño and La Niña, the Lagrangian precipitation in regions such as the northeast of South America, the east and west coast of North America, Europe, the south of West Africa, Southeast Asia, and Oceania is generally determined by the oceanic component of the precipitation, while that from terrestrial origin provides a major percentage of the average Lagrangian precipitation towards the interior of the continents. The role of the moisture contribution to precipitation from terrestrial and oceanic origin was evaluated in regions with statistically significant precipitation anomalies during El Niño and La Niña. Two-phase asymmetric behavior of the precipitation was found in regions such the northeast of South America, South Africa, the north of Mexico, and southeast of the United States, etc. principally for December-January-February and June-July-August. For some of these regions was also calculated the anomalies of the precipitation from other datasets to confirm the changes. Besides, for these regions was calculated the anomaly of the Lagrangian precipitation, which agrees in all the cases with the precipitation change. For these regions, it was determined which component of the Lagrangian precipitation, whether oceanic or terrestrial, controlled the precipitation anomalies. A schematic figure represents the extent of the most important seasonal oceanic and terrestrial sources for each subregion during El Niño and La Niña.</p>

2009 ◽  
Vol 10 (6) ◽  
pp. 1561-1568 ◽  
Author(s):  
Vasubandhu Misra

Abstract The remote influence of the El Niño–Southern Oscillation (ENSO) strongly manifests over the equatorial Amazon (EA)—including parts of southern Venezuela, Guyana, French Guiana, and Suriname—when there is a large-scale anomalous upper-level divergence over continental tropical South America. Modeling studies conducted in this paper suggest that it is because of the modulation of the local diurnal cycle of the moisture flux convergence, which results in the local amplification of the ENSO signal over the EA. Further, it is shown that the local land surface feedback plays a relatively passive but important role of maintaining these interannual precipitation anomalies over the EA region.


2014 ◽  
Vol 1 (2) ◽  
pp. 7-9
Author(s):  
Sergio Escobar-Lasso ◽  
Margarita Gil-Fernández

The long-tailed weasel Mustela frenata Lichtenstein, 1831 has the greatest geographical range among mustelids in the western hemisphere (Harding & Dragoo 2012). The range of M. frenata extends from the north of the United States, near the Canadian border, to northern South America (Sheffield & Thomas 1997), from sea level to 3800 masl (Sheffield & Thomas 1997, Reid & Helgen 2008).


2015 ◽  
Vol 14 (1) ◽  
pp. 107-120
Author(s):  
Petra Kiss

Since August 1945 atomic weapons have become significant factors in international relations, every state with great ambitions has aspired to get atomic secrets. The primary goal of the North Atlantic Treaty Organization (NATO) created in 1949 was – possessing the United States’, a nuclear power’s, security guarantee – to deter the Soviet agression. The first strategic documents of the Alliance were written with this very purpose. However, in the 1950s there was a shift in the allied nations’ policies, which influenced NATO’s strategic thinking as well, so in 1957 a real different strategic concept was adopted. Gaining technological superiority became the most important goal, which led to development and intense production of nuclear weapons. This article examines the emerging role of nuclear weapons and the changing strategy of the Alliance between 1949 and 1957.


2021 ◽  
Author(s):  
Jonghun Kam ◽  
Sungyoon Kim ◽  
Joshua Roundy

<p>This study used the North American Multi-Model Ensemble (NMME) system to understand the role of near surface temperature in the prediction skill for US climate extremes. In this study, the forecasting skill was measured by anomaly correlation coefficient (ACC) between the observed and forecasted precipitation (PREC) or 2-meter air temperature (T2m) over the contiguous United States (CONUS) during 1982–2012. The strength of the PREC-T2m coupling was measured by ACC between observed PREC and T2m or forecasted PREC and T2m over the CONUS. This study also assessed the NMME forecasting skill for the summers of 2004 (spatial anomaly correlation between PREC and T2m: 0.05), 2011 (-0.65), and 2012 (-0.60) when the PREC-T2m coupling is weaker or stronger than the 1982–2012 climatology (ACC:-0.34). This study found that most of the NMME models show stronger (negative) PREC-T2m coupling than the observed coupling, indicating that they fail to reproduce interannual variability of the observed PREC-T2m coupling. Some NMME models with skillful prediction for T2m show the skillful prediction of the precipitation anomalies and US droughts in 2011 and 2012 via strong PREC-T2m coupling despite the fact that the forecasting skill is year-dependent and model-dependent. Lastly, we explored how the forecasting skill for SSTs over north Pacific and Atlantic Oceans affects the forecasting skill for T2m and PREC over the US. The findings of this study suggest a need for the selective use of the current NMME seasonal forecasts for US droughts and pluvials.</p>


2019 ◽  
Vol 32 (22) ◽  
pp. 7643-7661 ◽  
Author(s):  
Dillon J. Amaya ◽  
Yu Kosaka ◽  
Wenyu Zhou ◽  
Yu Zhang ◽  
Shang-Ping Xie ◽  
...  

Abstract Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (>15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 El Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.


Author(s):  
Gerald Horne

This chapter describes how Claude Barnett began to collect material on racial problems in South America. It was at this point that Barnett and the Associated Negro Press (ANP) assumed more forcefully the role of the Negro's State Department, inquiring persistently about barriers strewn in the path of African Americans who sought to travel abroad. The ANP contacted the Brazilian embassy in Washington about the alleged barring of U.S. Negroes, though their charges were met with denials. Furthermore, the Mexican government irritably denied that it barred African Americans from arriving south of the border, after being accused thusly by Barnett. Meanwhile, the ANP did not necessarily come to this issue with clean hands, for it could be accused easily of falling victim to nativist bias in objecting to Latin American migration to the United States, as it demanded an open door for African Americans to enter other nations.


2020 ◽  
Vol 21 (8) ◽  
pp. 1793-1810
Author(s):  
Kingtse C. Mo ◽  
Dennis P Lettenmaier

AbstractWe examine reforecasts of flash droughts over the United States for the late spring (April–May), midsummer (June–July), and late summer/early autumn (August–September) with lead times up to 3 pentads based on the NOAA second-generation Global Ensemble Forecast System reforecasts version 2 (GEFSv2). We consider forecasts of both heat wave and precipitation deficit (P deficit) flash droughts, where heat wave flash droughts are characterized by high temperature and depletion of soil moisture and P deficit flash droughts are caused by lack of precipitation that leads to (rather than being the cause of) high temperature. We find that the GEFSv2 reforecasts generally capture the frequency of occurrence (FOC) patterns. The equitable threat score (ETS) of heat wave flash drought forecasts for late spring in the regions where heat wave flash droughts are most likely to occur over the north-central and Pacific Northwest regions is statistically significant up to 2 pentads. The GEFSv2 reforecasts capture the basic pattern of the FOC of P-deficit flash droughts and also are skillful up to lead about 2 pentads. However, the reforecasts overestimate the P-deficit flash drought FOC over parts of the Southwest in late spring, leading to large false alarm rates. For autumn, the reforecasts underestimate P-deficit flash drought occurrence over California and Nevada. The GEFSv2 reforecasts are able to capture the approximately linear relationship between evaporation and soil moisture, but the lack of skill in precipitation forecasts limits the skill of P-deficit flash drought forecasts.


2013 ◽  
Vol 7 (1) ◽  
pp. 241-248 ◽  
Author(s):  
X. Fettweis ◽  
E. Hanna ◽  
C. Lang ◽  
A. Belleflamme ◽  
M. Erpicum ◽  
...  

Abstract. Since 2007, there has been a series of surface melt records over the Greenland ice sheet (GrIS), continuing the trend towards increased melt observed since the end of the 1990's. The last two decades are characterized by an increase of negative phases of the North Atlantic Oscillation (NAO) favouring warmer and drier summers than normal over GrIS. In this context, we use a circulation type classification based on daily 500 hPa geopotential height to evaluate the role of atmospheric dynamics in this surface melt acceleration for the last two decades. Due to the lack of direct observations, the interannual melt variability is gauged here by the summer (June–July–August) mean temperature from reanalyses at 700 hPa over Greenland; analogous atmospheric circulations in the past show that ~70% of the 1993–2012 warming at 700 hPa over Greenland has been driven by changes in the atmospheric flow frequencies. Indeed, the occurrence of anticyclones centred over the GrIS at the surface and at 500 hPa has doubled since the end of 1990's, which induces more frequent southerly warm air advection along the western Greenland coast and over the neighbouring Canadian Arctic Archipelago (CAA). These changes in the NAO modes explain also why no significant warming has been observed these last summers over Svalbard, where northerly atmospheric flows are twice as frequent as before. Therefore, the recent warmer summers over GrIS and CAA cannot be considered as a long-term climate warming but are more a consequence of NAO variability affecting atmospheric heat transport. Although no global model from the CMIP5 database projects subsequent significant changes in NAO through this century, we cannot exclude the possibility that the observed NAO changes are due to global warming.


Sign in / Sign up

Export Citation Format

Share Document