Crystal plasticity finite element investigation of deformation of single crystal copper during cold spray

2021 ◽  
pp. 102484
Author(s):  
Rohan Chakrabarty ◽  
Jun Song
2021 ◽  
Vol 12 (01) ◽  
pp. 2150002
Author(s):  
Xiaoyu Qin ◽  
Guomin Han ◽  
Shengxu Xia ◽  
Weijie Liu ◽  
De-Ye Lin

This paper reports the modeling and simulation of cyclic behavior of single crystal nickel-based superalloy by using the crystal plasticity finite element method. Material constitutive model based on the crystal plasticity theory is developed and is implemented in a parallel way as user subroutine modules embedded in the commercial Abaqus[Formula: see text] software. For simplicity in calibration and without loss of generality, the crystal plasticity constitutive relationship used in this work takes the form that only contains a few parameters. The parameters are optimized by using the Powell algorithm. We employ the calibrated constitutive model with the finite element solver on a cuboid and a blade to simulate cyclic and anisotropic properties of single crystal superalloy. Results show that the predicted stress–strain curves are in good agreement with the experimental measurements, and anisotropic results are presented in both elastic and plastic regions.


Sign in / Sign up

Export Citation Format

Share Document