An intrusion detection system for connected vehicles in smart cities

2019 ◽  
Vol 90 ◽  
pp. 101842 ◽  
Author(s):  
Moayad Aloqaily ◽  
Safa Otoum ◽  
Ismaeel Al Ridhawi ◽  
Yaser Jararweh
Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1765
Author(s):  
Francesco Pascale ◽  
Ennio Andrea Adinolfi ◽  
Simone Coppola ◽  
Emanuele Santonicola

Today’s modern vehicles are connected to a network and are considered smart objects of IoT, thanks to the capability to send and receive data from the network. One of the greatest challenges in the automotive sector is to make the vehicle secure and reliable. In fact, there are more connected instruments on a vehicle, such as the infotainment system and/or data interchange systems. Indeed, with the advent of new paradigms, such as Smart City and Smart Road, the vision of Internet of Things has evolved substantially. Today, we talk about the V2X systems in which the vehicle is strongly connected with the rest of the world. In this scenario, the main aim of all connected vehicles vendors is to provide a secure system to guarantee the safety of the drive and persons against a possible cyber-attack. So, in this paper, an embedded Intrusion Detection System (IDS) for the automotive sector is introduced. It works by adopting a two-step algorithm that provides detection of a possible cyber-attack. In the first step, the methodology provides a filter of all the messages on the Controller Area Network (CAN-Bus) thanks to the use of a spatial and temporal analysis; if a set of messages are possibly malicious, these are analyzed by a Bayesian network, which gives the probability that a given event can be classified as an attack. To evaluate the efficiency and effectiveness of our method, an experimental campaign was conducted to evaluate them, according to the classic evaluation parameters for a test’s accuracy. These results were compared with a common data set on cyber-attacks present in the literature. The first experimental results, obtained in a test scenario, seem to be interesting. The results show that our method has good correspondence in the presence of the most common cyber-attacks (DDoS, Fuzzy, Impersonating), obtaining a good score relative to the classic evaluation parameters for a test’s accuracy. These results have decreased performance when we test the system on a Free State Attack.


2020 ◽  
Vol 61 ◽  
pp. 102324 ◽  
Author(s):  
Md Arafatur Rahman ◽  
A. Taufiq Asyhari ◽  
L.S. Leong ◽  
G.B. Satrya ◽  
M. Hai Tao ◽  
...  

2021 ◽  
Vol 14 (3) ◽  
pp. 20-37
Author(s):  
Arun Kumar Bediya ◽  
Rajendra Kumar

Internet of things (IoT) comprises a developing ecosystem of responsive and interconnected devices, sensors, networks, and software. The internet of things keeps on extending with the number of its different equipment segments for smart cities, healthcare, smart homes, assisted living, smart vehicles, transportation, framework, and many more are the areas where the internet of things benefits human lives. IoT networks are meant to be monitored on real-time events, and if these devices get attacked, it can have an unfavorable effect on the system. This paper discussed many possible attacks at IoT networks and distributed denial of service (DDoS) attack is one of the most dangerous among them. Blockchain technology can be utilized to develop a framework to protect IoT systems; blockchain is a new technology used for cryptocurrency transactions. This paper proposed BIoTIDS an intrusion detection system for the IoT network using blockchain. BIoTIDS is able to detect an intruder in the IoT network and also able to identify DDoS attacks in IoT networks.


2020 ◽  
Vol 9 (3) ◽  
pp. 39 ◽  
Author(s):  
Rabie A. Ramadan

The world is experiencing the new development of smart cities. Smart cities’ infrastructure in its core is based on wireless sensor networks (WSNs) and the internet of things (IoT). WSNs consist of tiny smart devices (Motes) that are restricted in terms of memory, storage, processing capabilities, and sensing and communication ranges. Those limitations pose many security issues where regular cryptography algorithms are not suitable to be used. Besides, such capabilities might be degraded in case cheap sensors are deployed with very large numbers in applications, such as smart cities. One of the major security issues in WSNs that affect the overall operation, up to network interruption, in smart cities is the sinkhole routing attack. The paper has three-fold contributions: (1) it utilizes the concept of clustering for energy saving in WSNs, (2) proposing two light and simple algorithms for intrusion detection and prevention in smart cities—threshold-based intrusion detection system (TBIDS) and multipath-based intrusion detection system (MBIDS), and (3) utilizing the cross-layer technique between the application layer and network layer for the purpose of intrusion detection. The proposed methods are evaluated against recent algorithms—S-LEACH, MS-LEACH, and ABC algorithms.


Sign in / Sign up

Export Citation Format

Share Document