Physical layer secret key generation using discrete wavelet packet transform

2021 ◽  
Vol 118 ◽  
pp. 102523
Author(s):  
Megha S. Kumar ◽  
R. Ramanathan ◽  
M. Jayakumar ◽  
Devendra Kumar Yadav
Author(s):  
PARUL SHAH ◽  
S. N. MERCHANT ◽  
U. B. DESAI

This paper presents two methods for fusion of infrared (IR) and visible surveillance images. The first method combines Curvelet Transform (CT) with Discrete Wavelet Transform (DWT). As wavelets do not represent long edges well while curvelets are challenged with small features, our objective is to combine both to achieve better performance. The second approach uses Discrete Wavelet Packet Transform (DWPT), which provides multiresolution in high frequency band as well and hence helps in handling edges better. The performance of the proposed methods have been extensively tested for a number of multimodal surveillance images and compared with various existing transform domain fusion methods. Experimental results show that evaluation based on entropy, gradient, contrast etc., the criteria normally used, are not enough, as in some cases, these criteria are not consistent with the visual quality. It also demonstrates that the Petrovic and Xydeas image fusion metric is a more appropriate criterion for fusion of IR and visible images, as in all the tested fused images, visual quality agrees with the Petrovic and Xydeas metric evaluation. The analysis shows that there is significant increase in the quality of fused image, both visually and quantitatively. The major achievement of the proposed fusion methods is its reduced artifacts, one of the most desired feature for fusion used in surveillance applications.


Author(s):  
Hsin-Hsiung Huang ◽  
Senthil Balaji Girimurugan

Abstract In recent years, alignment-free methods have been widely applied in comparing genome sequences, as these methods compute efficiently and provide desirable phylogenetic analysis results. These methods have been successfully combined with hierarchical clustering methods for finding phylogenetic trees. However, it may not be suitable to apply these alignment-free methods directly to existing statistical classification methods, because an appropriate statistical classification theory for integrating with the alignment-free representation methods is still lacking. In this article, we propose a discriminant analysis method which uses the discrete wavelet packet transform to classify whole genome sequences. The proposed alignment-free representation statistics of features follow a joint normal distribution asymptotically. The data analysis results indicate that the proposed method provides satisfactory classification results in real time.


Sign in / Sign up

Export Citation Format

Share Document