A modified isoparametric mapping fill method to display color mapping of data

2004 ◽  
Vol 35 (8-9) ◽  
pp. 585-591
Author(s):  
Ke-Yong Wang ◽  
Qing-Hua Qin ◽  
Yi-Lan Kang
Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 245
Author(s):  
Carlo Caiati ◽  
Arnaldo Scardapane ◽  
Fortunato Iacovelli ◽  
Paolo Pollice ◽  
Teresa Immacolata Achille ◽  
...  

We report the case of a 71-year-old patient with many risk factors for coronary atherosclerosis, who underwent computed coronary angiography (CTA), in accordance with the guidelines, for recent onset atypical chest pain. CTA revealed critical (>50% lumen diameter narrowing) stenosis of the proximal anterior descending coronary, and the patient was scheduled for invasive coronary angiography (ICA). Before ICA he underwent enhanced transthoracic echo-Doppler (E-Doppler TTE) for coronary flow detection by color-guided pulsed-wave Doppler recording of the left main (LMCA) and whole left anterior descending coronary artery (LAD,) along with coronary flow reserve (CFR) in the distal LAD calculated as the ratio, of peak flow velocity during i.v. adenosine (140 mcg/Kg/m) to resting flow velocity. E-Doppler TTE mapping revealed only mild stenosis (28% area narrowing) of the mid LAD and a CFR of 3.20, in perfect agreement with the color mapping showing no flow limiting stenosis in the LMCA and LAD. ICA revealed only a very mild stenosis in the mid LAD and mild atherosclerosis in the other coronaries (intimal irregularities). Thus, coronary stenosis was better predicted by E-Doppler TTE than by CTA. Coronary flow and reserve as assessed by E-Doppler TTE trumps coronary anatomy as assessed by CTA, without exposing the patient to harmful radiation and iodinated contrast medium.


2021 ◽  
Author(s):  
Hiroshi Ohno ◽  
Takahiro Kamikawa

AbstractThe bidirectional reflectance distribution function (BRDF) that describes an angle-resolved distribution of surface reflectance is available for characterizing surface properties of a material. A one-shot BRDF imaging system can capture an in-plane color mapping of light direction extracted from a surface BRDF distribution. A surface roughness identification method is then proposed here using the imaging system. A difference between surface properties of a matt paper and a glossy paper is experimentally shown to be detected using the method. A surface reconstruction method of an axisymmetric micro-object using the imaging system is also proposed here. The imaging system experimentally shows that it can reconstruct an axisymmetric aluminium cone surface with a height of 37 μm.


1991 ◽  
Vol 15 (6) ◽  
pp. 923-929 ◽  
Author(s):  
Philippe Douek ◽  
Robert Turner ◽  
James Pekar ◽  
Nichoias Patronas ◽  
Denis Le Bihan

Background: Traditional methods of the content and composition of fruits nutrients determining are labor-intensive and material-intensive, require grinding and special processing of biological material. The fluorescent method is one of the most modern and promising. It allows determining physiological and metabolic parameters without plant tissues destruction. Therefore, the patterns and causes of differences identification of the different apple varieties fluorescent properties is an important task, which will solve the problem of non-invasive determination of the composition and content of useful substances in fruits. Objectives: The determination of the surface tissues fluorescent properties in the green area of the fluorescence spectrum of apple varieties with different coloring of exocarp is the purpose of the work. Materials and methods: The object of the study is apples of four popular winter varieties, close in maturity, with different coloring of exocarp. The method of fluorescence spectroscopy of the apples surface tissues was used. The excitation was made by a semiconductor laser with a wavelength of 405 nm and a power of 36 mW, operating in a continuous mode. The apples coloring is defined as the coordinate a of the CIELAB color mapping system. Results: It was found that the wavelength of the maximum in the green area of the fluorescence spectrum of different apple varieties surface tissues differs by approximately 8–18 nm. At the same time, the difference of wavelengths of the maximum in the red area for different apple varieties does not exceed 5 nm. It was found that wavelength of the maximum in the green area of the fluorescence spectrum differs in different varieties in accordance with the coloring of the exocarp. If green color prevails in the exocarp coloring the fluorescence maximum in the green area has a longer wavelength, and if red prevails it has a shorter wavelength, while if yellow prevails, the wavelength occupies an intermediate position. Conclusions: The pigment composition of the surface tissues of apples affects on their fluorescence in the green area of the spectrum. Possible reasons for the differences of the maximum wavelength in the green area of the fluorescence spectrum are the variability of flavonols composition depending on the apple variety and the influence of red pigments.


2020 ◽  
Vol 98 (6) ◽  
pp. 47-51
Author(s):  
E. A. Borodulinа ◽  
A. V. Kolsаnov ◽  
P. V. Rogozhkin ◽  
A. A. Mаnukyan

The clinical experience demonstrates the importance of 3D modeling when planning surgical intervention in patients with pulmonary tuberculosis. The 3D model was built up based computed tomography data using Avtoplan software with plug-ins for segmentation of the lung, pathological foci, vascular structures, and bronchial tree. The data obtained during 3D modeling allowed us to plan surgery and the data were fully confirmed during the operation. The 3D model with color mapping reveals syntopy, which is extremely difficult to determine using standard computed tomography and allows the wider use of minimally invasive endoscopic surgical interventions.


Sign in / Sign up

Export Citation Format

Share Document