scholarly journals WITHDRAWN: Discrete singular convolution approach for buckling and vibration analyses of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges

Author(s):  
Ömer Civalek ◽  
Armağan Korkmaz ◽  
Çiğdem Demir
2010 ◽  
Vol 07 (02) ◽  
pp. 229-240 ◽  
Author(s):  
M. GÜRSES ◽  
E. KUZU ◽  
Ö. CÍVALEK

The free vibration of sector plates based on the classical Kirchhoff plate theory is analyzed by the method of discrete singular convolution using the Regularized Shannon delta (RSD) kernel. This method is applied to sector plates with a combination of boundary conditions, and the natural frequencies are calculated. The effects of the sector angle, boundary conditions and mode numbers on the frequency parameters are investigated. Comparisons are made with existing numerical and analytical solutions in the literature. This method is very effective for the study of vibration problems of sector plates.


2021 ◽  
pp. 096739112110233
Author(s):  
Mohammad Hassan Shojaeefard ◽  
Abolfazl Khalkhali ◽  
Sharif Khakshournia

It has been demonstrated that adding a few percent of nanoscale reinforcements, leads to remarkable improvement in mechanical properties of the polymers such as stiffness, damping, and energy absorption. These lightweight materials are attractive substitutes for the heavy metallic structural parts in the automotive, military, aerospace and many other industries. However, due to complexity of these multiphase materials, accurate modeling of their behavior in real loading cases is still ambiguous. The impact simulation is a vital step in design procedure of a vehicle, where a strain rate-dependent model of its components is required. In this paper, an elasto-viscoplastic modeling procedure of the polymer-based nanocomposites, assuming the elastic behavior of the nano-phase is presented; whereas the polymeric matrix deformation is dependent to the loading rate and is characterized by the method of Genetic algorithm optimization-based fitting to the experimental observations. By introducing a modified Halpin-Tsai method, the nanocomposite is then modeled as a homogenized material where the modification algorithm is the main challenge. A combination of approaches including parametric analysis, central composite design of experiments and response surface method is proposed to modify the tangent modulus of the polymeric matrix to be passed as the input to the Halpin-Tsai equations. Finally, the procedure is implemented to a set of epoxy-GNP nanocomposites under unidirectional compressive loads with different rates and the stress-strain curves are predicted with a decent precision.


2020 ◽  
Vol 12 (4) ◽  
pp. 676 ◽  
Author(s):  
Yong Yang ◽  
Wei Tu ◽  
Shuying Huang ◽  
Hangyuan Lu

Pansharpening is the process of fusing a low-resolution multispectral (LRMS) image with a high-resolution panchromatic (PAN) image. In the process of pansharpening, the LRMS image is often directly upsampled by a scale of 4, which may result in the loss of high-frequency details in the fused high-resolution multispectral (HRMS) image. To solve this problem, we put forward a novel progressive cascade deep residual network (PCDRN) with two residual subnetworks for pansharpening. The network adjusts the size of an MS image to the size of a PAN image twice and gradually fuses the LRMS image with the PAN image in a coarse-to-fine manner. To prevent an overly-smooth phenomenon and achieve high-quality fusion results, a multitask loss function is defined to train our network. Furthermore, to eliminate checkerboard artifacts in the fusion results, we employ a resize-convolution approach instead of transposed convolution for upsampling LRMS images. Experimental results on the Pléiades and WorldView-3 datasets prove that PCDRN exhibits superior performance compared to other popular pansharpening methods in terms of quantitative and visual assessments.


Sign in / Sign up

Export Citation Format

Share Document