Fire emergency evacuation simulation based on integrated fire–evacuation model with discrete design method

2013 ◽  
Vol 65 ◽  
pp. 101-111 ◽  
Author(s):  
Peizhong Yang ◽  
Chao Li ◽  
Dehu Chen
2020 ◽  
Author(s):  
Qin Peijun ◽  
Yi Tao ◽  
Zhang Xiaofei ◽  
Jiang Shaoen ◽  
Che Yanbo

2020 ◽  
Vol 37 (5) ◽  
pp. 1757-1786 ◽  
Author(s):  
Jian-Ping Wang ◽  
Mei-Ru Wang ◽  
Jian-Lan Zhou ◽  
Qing-Jun Zuo ◽  
Xun-Xian Shi

Purpose The purpose of this study is to develop optimal evacuation plan to provide valuable theoretical and practical insight in the fire evacuation work of similar structures, by proposing a systematic simulation-based guided-evacuation agent-based model (GAM) and a three-stage mathematical evacuation model to investigate how to simulate, assess and improve the performance efficiency of the evacuation plan. Design/methodology/approach The authors first present the self-evacuation and guided-evacuation models to determine the optimal evacuation plan in ship chamber. Three key performance indicators are put forward to quantitatively assess the evacuation performance within the two fire scenarios. The evacuation model in tower is built to obtain the dividing points of the three different fire evacuation plans. Findings The study shows that the optimal evacuation plan determined by the GAM considering social relationships effectively relieves the congestion or collision of evacuees and improves the evacuation uniformity. The optimal evacuation plan not only solves the crush caused by congestion or collision of evacuees but also can greatly shorten the evacuation time for passenger ship fire. Originality/value This study establishes the GAM considering the interactive evacuee characteristics and the proportion of evacuees guided by the crew members to make the optimal evacuation plan more time-efficient. The self-evacuation process is simulated to assess the performance of the guided-evacuation strategies, which are used to verify the effectiveness and feasibility of the optimal evacuation plan in this research.


2013 ◽  
Vol 765-767 ◽  
pp. 591-594
Author(s):  
Chao Ying Zhang ◽  
Hu Liu

Using interactive virtual simulation methods and combining numerical calculation software, the 3D airline emergency evacuation simulation system is established in Virtools platform according to the received data. The system takes full account of the passengers' individual differences during the evacuation process, setting up different member parameters, which influence the passengers evacuation behavior. In order to fulfill the different types of evacuation requirements in various simulation, it can change evacuation path algorithm, cabin layout data and evacuees component parameters, to get the corresponding evacuation simulation results. Meanwhile, the system interface can change visual angle to realize human-machine interaction freely and reflect the evacuation of the evacuation process accurately. Also the reliability of the system simulation result is verified by compared with the results of actual certification trial.


SIMULATION ◽  
2020 ◽  
Vol 97 (1) ◽  
pp. 19-32
Author(s):  
Jiabin Xie ◽  
Kecheng Chen ◽  
Trevor Hocksun Kwan ◽  
Qinghe Yao

A coupled analysis of agent behavior and Computational Fluid Dynamics (CFD) model is applied to investigate the fire evacuation effectiveness in a popular metro station in Guangzhou, China. Due to the high density and complexity of traffic, the concept of Required Safe Escape Time and Available Safe Escape Time (RSET/ASET), which is more flexible and adaptable than the “6 minutes” principle, is applied in the safety assessment of fire evacuation. To pursue a stable simulation of the coupled model, the standard Critical Radiant Flux is used to deter the tenability criteria for exposure to fire and heat. Various related factors, including the fire location, the Heat Release Rate (HRR) of fire, the crowd density, and the operation mode of escalators, are analyzed through a series of simulations. Results indicate that the interaction between fire and humans should not be neglected in the evacuation simulation. Both the fire location and the crowd density have a significant effect on the evacuation, while the HRR of fire has a minor impact. When the accident happens at the entrance of an escalator, RSET is 58.3% longer than that when the accident occurs in the middle of the platform. RSET grows with the increase of the crowd density linearly. Besides, the evacuation efficiency could be partly improved by changing escalators that usually operate in the descending mode into ascending mode.


Safety ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 47
Author(s):  
Wattana Chanthakhot ◽  
Kasin Ransikarbum

Emergency events in the industrial sector have been increasingly reported during the past decade. However, studies that focus on emergency evacuation to improve industrial safety are still scarce. Existing evacuation-related studies also lack a perspective of fire assembly point’s analysis. In this research, location of assembly points is analyzed using the multi-criteria decision analysis (MCDA) technique based on the integrated information entropy weight (IEW) and techniques for order preference by similarity to ideal solution (TOPSIS) to support the fire evacuation plan. Next, we propose a novel simulation model that integrates fire dynamics simulation coupled with agent-based evacuation simulation to evaluate the impact of smoke and visibility from fire on evacuee behavior. Factors related to agent and building characteristics are examined for fire perception of evacuees, evacuees with physical disabilities, escape door width, fire location, and occupancy density. Then, the proposed model is applied to a case study of a home appliance factory in Chachoengsao, Thailand. Finally, results for the total evacuation time and the number of remaining occupants are statistically examined to suggest proper evacuation planning.


Sign in / Sign up

Export Citation Format

Share Document