scholarly journals Analysis for fin efficiency with temperature-dependent thermal conductivity of fractional order energy balance equation using HPST Method

2016 ◽  
Vol 55 (1) ◽  
pp. 77-85 ◽  
Author(s):  
A. Patra ◽  
S. Saha Ray
2016 ◽  
Vol 71 (12) ◽  
pp. 1105-1110
Author(s):  
H.Q. Kafri ◽  
S.A. Khuri ◽  
Ali Sayfy

AbstractThis article introduces a new numerical approach to solve the equation that models a rectangular purely convecting fin with temperature-dependent thermal conductivity. The algorithm embeds an integral operator, defined in terms of Green’s function, into Krasnoselskii–Mann’s fixed point iteration scheme. The validity of the method is demonstrated by a number of examples that consist of a range of values of the parameters that appear in the model. In addition, the evaluation of the fin efficiency is presented. The residual error computations show that the current method provides highly accurate approximations.


2020 ◽  
Vol 98 (7) ◽  
pp. 700-712 ◽  
Author(s):  
Sheng-Wei Sun ◽  
Xian-Fang Li

This paper studies a class of nonlinear problems of convective longitudinal fins with temperature-dependent thermal conductivity and heat transfer coefficient. For thermal conductivity and heat transfer coefficient dominated by power-law nonlinearity, the exact temperature distribution is obtained analytically in an implicit form. In particular, the explicit expressions of the fin temperature distribution are derived explicitly for some special cases. An analytical expression for fin efficiency is given as a function of a thermogeometric parameter. The influences of the nonlinearity and the thermogeometric parameter on the temperature and thermal performance are analyzed. The temperature distribution and the fin efficiency exhibit completely different behaviors when the power-law exponent of the heat transfer coefficient is more or less than negative unity.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
K. Saravanakumar ◽  
V. Ananthaswamy ◽  
M. Subha ◽  
L. Rajendran

We have employed homotopy analysis method (HAM) to evaluate the approximate analytical solution of the nonlinear equation arising in the convective straight fins with temperature-dependent thermal conductivity problem. Solutions are presented for the dimensionless temperature distribution and fin efficiency of the nonlinear equation. The analytical results are compared with previous work and satisfactory agreement is noted.


2019 ◽  
Vol 8 (1) ◽  
pp. 145-156
Author(s):  
Trushit Patel ◽  
Ramakanta Meher

Abstract In this paper, the temperature distribution in a convective radial fins is analyzed through a fractional order energy balance equation with the consideration of internal heat generation and temperature dependent thermal conductivity. Adomian decomposition Sumudu transform method is used to study the influence of temperature distribution and the efficiency of radial fins for different values of thermal conductivity and to determine the role of thermal conductivity, thermo-geometric fin parameter as well as fractional order values in finding the temperature distribution and the fin efficiency of the convective radial fins. Finally, the efficiency of this proposed method has been studied by comparing the obtained results with the classical order results obtained by using numerical method and Variational Iteration Method (Coskun and Atay, 2007).


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Mahdi Anbarloei ◽  
Elyas Shivanian

In the current paper, the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient is revisited. In this problem, it has been assumed that the heat transfer coefficient is expressed in a power-law form and the thermal conductivity is a linear function of temperature. It is shown that its governing nonlinear differential equation is exactly solvable. A full discussion and exact analytical solution in the implicit form are given for further physical interpretation and it is proved that three possible cases may occur: there is no solution to the problem, the solution is unique, and the solutions are dual depending on the values of the parameters of the model. Furthermore, we give exact analytical expressions of fin efficiency as a function of thermogeometric fin parameter.


Sign in / Sign up

Export Citation Format

Share Document