scholarly journals Transpiration effects on hybrid nanofluid flow and heat transfer over a stretching/shrinking sheet with uniform shear flow

2020 ◽  
Vol 59 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop
2020 ◽  
Vol 66 ◽  
pp. 157-171 ◽  
Author(s):  
Najiyah Safwa Khashi'ie ◽  
Norihan Md Arifin ◽  
Ioan Pop ◽  
Roslinda Nazar ◽  
Ezad Hafidz Hafidzuddin ◽  
...  

1978 ◽  
Vol 86 (1) ◽  
pp. 49-65 ◽  
Author(s):  
R. C. Ackerberg ◽  
R. D. Patel ◽  
S. K. Gupta

The problem of heat transfer (or mass transfer at low transfer rates) to a strip of finite length in a uniform shear flow is considered. For small values of the Péclet number (based on wall shear rate and strip length), diffusion in the flow direction cannot be neglected as in the classical Leveque solution. The mathematical problem is solved by the method of matched asymptotic expansions and expressions for the local and overall dimensionless heat-transfer rate from the strip are found. Experimental data on wall mass-transfer rates in a tube at small Péclet numbers have been obtained by the well-known limiting-current method using potassium ferrocyanide and potassium ferricyanide in sodium hydroxide solution. The Schmidt number is large, so that a uniform shear flow can be assumed near the wall. Experimental results are compared with our theoretical predictions and the work of others, and the agreement is found to be excellent.


2019 ◽  
Vol 29 (12) ◽  
pp. 4875-4894 ◽  
Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

Purpose The purpose of this paper is to study the steady mixed convection hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux. Design/methodology/approach The governing partial differential equations are transformed into a set of ordinary differential equations by using a similarity transformation. The transformed equations are then solved numerically using the boundary value problem solver (bvp4c) in Matlab software. The features of the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles for different values of the governing parameters are analyzed and discussed. Findings It is found that dual solutions exist for a certain range of the mixed convection parameter where its critical values decrease with the increasing of the copper (Cu) nanoparticle volume fractions and for the smaller needle size. It is also observed that the increasing of the copper (Cu) nanoparticle volume fractions and the decreasing of the needle size tend to enhance the skin friction coefficient and the local Nusselt number on the needle surface. A temporal stability analysis is performed to determine the stability of the dual solutions in the long run, and it is revealed that only one of them is stable, while the other is unstable. Originality/value The problem of hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux is the important originality of the present study where the dual solutions for the opposing flow are obtained.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Natalia C. Roşca ◽  
Alin V. Roşca ◽  
Amin Jafarimoghaddam ◽  
Ioan Pop

Purpose The purpose of this paper is to study the laminar boundary layer cross flow and heat transfer on a rotational stagnation-point flow over either a stretching or shrinking porous wall submerged in hybrid nanofluids. The involved boundary layers are of stream-wise type with stretching/shrinking process along the surface. Design/methodology/approach Using appropriate similarity variables the partial differential equations are reduced to ordinary (similarity) differential equations. The reduced system of equations is solved analytically (by high-order perturbed field propagation for small to moderate stretching/shrinking parameter and low-order perturbation for large stretching/shrinking parameter) and numerically using the function bvp4c from MATLAB for different values of the governing parameters. Findings It was found that the basic similarity equations admit dual (upper and lower branch) solutions for both stretching/shrinking surfaces. Moreover, performing a linear stability analysis, it was confirmed that the upper branch solution is realistic (physically realizable), while the lower branch solution is not physically realizable in practice. These dual solutions will be studied in the present paper. Originality/value The authors believe that all numerical results are new and original and have not been published before for the present problem.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1430
Author(s):  
Mohammed M. Fayyadh ◽  
Kohilavani Naganthran ◽  
Md Faisal Md Basir ◽  
Ishak Hashim ◽  
Rozaini Roslan

The present theoretical work endeavors to solve the Sutterby nanofluid flow and heat transfer problem over a permeable moving sheet, together with the presence of thermal radiation and magnetohydrodynamics (MHD). The fluid flow and heat transfer features near the stagnation region are considered. A new form of similarity transformations is introduced through scaling group analysis to simplify the governing boundary layer equations, which then eases the computational process in the MATLAB bvp4c function. The variation in the values of the governing parameters yields two different numerical solutions. One of the solutions is stable and physically reliable, while the other solution is unstable and is associated with flow separation. An increased effect of the thermal radiation improves the rate of convective heat transfer past the permeable shrinking sheet.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3047
Author(s):  
Natalia C. Roşca ◽  
Alin V. Roşca ◽  
Emad H. Aly ◽  
Ioan Pop

This paper studies the boundary layer flow and heat transfer characteristics past a permeable isothermal stretching/shrinking surface using both nanofluid and hybrid nanofluid flows (called modified Buongiorno nonliquid model). Using appropriate similarity variables, the PDEs are transformed into ODEs to be solved numerically using the function bvp4c from MATLAB. It was found that the solutions of the resulting system have two branches, upper and lower branch solutions, in a certain range of the suction, stretching/shrinking and hybrid nanofluids parameters. Both the analytic and numerical results are obtained for the skin friction coefficient, local Nusselt number, and velocity and temperature distributions, for several values of the governing parameters. It results in the governing parameters considerably affecting the flow and heat transfer characteristics.


Sign in / Sign up

Export Citation Format

Share Document