Three-Dimensional Hybrid Nanofluid Flow and Heat Transfer past a Permeable Stretching/Shrinking Sheet with Velocity Slip and Convective Condition

2020 ◽  
Vol 66 ◽  
pp. 157-171 ◽  
Author(s):  
Najiyah Safwa Khashi'ie ◽  
Norihan Md Arifin ◽  
Ioan Pop ◽  
Roslinda Nazar ◽  
Ezad Hafidz Hafidzuddin ◽  
...  
Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 643
Author(s):  
Nur Syazana Anuar ◽  
Norfifah Bachok ◽  
Ioan Pop

The mathematical modeling of dusty Cu-Al2O3/water nanofluid flow driven by a permeable deformable sheet was explored numerically. Rather than no–slip conditions at the boundary, velocity slip and thermal slip were considered. To achieve the system of nonlinear ordinary differential equations (ODEs), we employed some appropriate transformations and solved them numerically using MATLAB software (built–in solver called bvp4c). The influences of relevant parameters on fluid flow and heat transfer characteristics are discussed and presented in graphs. The findings showed that double solutions appeared in the case of stretching and shrinking sheets which contributed to the analysis of stability. The stability analysis, therefore, confirmed that merely the first solution was a stable solution. The addition of nanometer-sized particles (Cu) was found to significantly strengthen the heat transfer rate of the dusty nanofluid. Meanwhile, an upsurge in the velocity and thermal slip was shown to decrease the local Nusselt number. The result also revealed that an increment of fluid particle interaction decreased the boundary layer thickness.


2019 ◽  
Vol 29 (12) ◽  
pp. 4875-4894 ◽  
Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

Purpose The purpose of this paper is to study the steady mixed convection hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux. Design/methodology/approach The governing partial differential equations are transformed into a set of ordinary differential equations by using a similarity transformation. The transformed equations are then solved numerically using the boundary value problem solver (bvp4c) in Matlab software. The features of the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles for different values of the governing parameters are analyzed and discussed. Findings It is found that dual solutions exist for a certain range of the mixed convection parameter where its critical values decrease with the increasing of the copper (Cu) nanoparticle volume fractions and for the smaller needle size. It is also observed that the increasing of the copper (Cu) nanoparticle volume fractions and the decreasing of the needle size tend to enhance the skin friction coefficient and the local Nusselt number on the needle surface. A temporal stability analysis is performed to determine the stability of the dual solutions in the long run, and it is revealed that only one of them is stable, while the other is unstable. Originality/value The problem of hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux is the important originality of the present study where the dual solutions for the opposing flow are obtained.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1199 ◽  
Author(s):  
Jing Zhu ◽  
Yaxin Xu ◽  
Xiang Han

The velocity and thermal slip impacts on the magnetohydrodynamics (MHD) nanofluid flow and heat transfer through a stretched thin sheet are discussed in the paper. The no slip condition is substituted for a new slip condition consisting of higher-order slip and constitutive equation. Similarity transformation and Lie point symmetry are adopted to convert the derived governed equations to ordinary differential equations. An approximate analytical solution is gained through the homotopy analysis method. The impacts of velocity slip, temperature jump, and other physical parameters on flow and heat transfer are illustrated. Results indicate that the first-order slip and nonlinear slip parameters reduce the velocity boundary layer thickness and Nusselt number, whereas the effect on shear stress is converse. The temperature jump parameter causes a rise in the temperature, but a decline in the Nusselt number. With the increase of the order, we can get that the error reaches 10 − 6 from residual error curve. In addition, the velocity contours and the change of skin friction coefficient are computed through Ansys Fluent.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Abdelhalim Ebaid ◽  
Fahd Al Mutairi ◽  
S. M. Khaled

In nanofluid mechanics, it has been proven recently that the no slip condition at the boundary is no longer valid which is the reason that we consider the effect of such slip condition on the flow and heat transfer of two types of nanofluids. The present paper considers the effect of the velocity slip condition on the flow and heat transfer of the Cu-water and the TiO2-water nanofluids over stretching/shrinking sheets in the presence of a magnetic field. The exact expression for the fluid velocity is obtained in terms of the exponential function, while an effective analytical procedure is suggested and successfully applied to obtain the exact temperature in terms of the generalized incomplete gamma function. It is found in this paper that the Cu-water nanofluid is slower than the TiO2-water nanofluid for both cases of the stretching/shrinking sheets. However, the temperature of the Cu-water nanofluid is always higher than the temperature of the TiO2-water nanofluid. In the case of shrinking sheet the dual solutions have been obtained at particular values of the physical parameters. In addition, the effect of various physical parameters on such dual solutions is discussed through the graphs.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Natalia C. Roşca ◽  
Alin V. Roşca ◽  
Amin Jafarimoghaddam ◽  
Ioan Pop

Purpose The purpose of this paper is to study the laminar boundary layer cross flow and heat transfer on a rotational stagnation-point flow over either a stretching or shrinking porous wall submerged in hybrid nanofluids. The involved boundary layers are of stream-wise type with stretching/shrinking process along the surface. Design/methodology/approach Using appropriate similarity variables the partial differential equations are reduced to ordinary (similarity) differential equations. The reduced system of equations is solved analytically (by high-order perturbed field propagation for small to moderate stretching/shrinking parameter and low-order perturbation for large stretching/shrinking parameter) and numerically using the function bvp4c from MATLAB for different values of the governing parameters. Findings It was found that the basic similarity equations admit dual (upper and lower branch) solutions for both stretching/shrinking surfaces. Moreover, performing a linear stability analysis, it was confirmed that the upper branch solution is realistic (physically realizable), while the lower branch solution is not physically realizable in practice. These dual solutions will be studied in the present paper. Originality/value The authors believe that all numerical results are new and original and have not been published before for the present problem.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1649
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Unsteady stagnation point flow in hybrid nanofluid (Al2O3-Cu/H2O) past a convectively heated stretching/shrinking sheet is examined. Apart from the conventional surface of the no-slip condition, the velocity slip condition is considered in this study. By incorporating verified similarity transformations, the differential equations together with their partial derivatives are changed into ordinary differential equations. Throughout the MATLAB operating system, the simplified mathematical model is clarified by employing the bvp4c procedure. The above-proposed approach is capable of producing non-uniqueness solutions when adequate initial assumptions are provided. The findings revealed that the skin friction coefficient intensifies in conjunction with the local Nusselt number by adding up the nanoparticles volume fraction. The occurrence of velocity slip at the boundary reduces the coefficient of skin friction; however, an upward trend is exemplified in the rate of heat transfer. The results also signified that, unlike the parameter of velocity slip, the increment in the unsteady parameter conclusively increases the coefficient of skin friction, and an upsurge attribution in the heat transfer rate is observed resulting from the increment of Biot number. The findings are evidenced to have dual solutions, which inevitably contribute to stability analysis, hence validating the feasibility of the first solution.


Sign in / Sign up

Export Citation Format

Share Document