branch solution
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Aamir Hamid ◽  
Yu-Ming Chu ◽  
M. Ijaz Khan ◽  
R. Naveem Kumar ◽  
R. J. Punith Gowd ◽  
...  

In this study, we investigated dual solutions for the influence of chemical reaction and radiation effect on axisymmetric flow of magneto-Cross nanomaterial towards a radially shrinking disk on taking account of stagnation point. The governing expressions which describe the assumed flow are reduced to ordinary differential equations by opting suitable similarity variables. The dual solutions on the performance of dimensionless velocity, thermal, concentration gradients, skin friction, rate of heat and mass transfer with the impact of relevant parameters are studied using suitable graphs. Result outcomes reveal that, upsurge in Brownian motion parameter improves the thermal gradient in case of both the solution but, converse trend is detected in concentration gradient. The uplift of thermophoresis parameter boosts up the concentration gradient in both branch solution but reverse trend is noticed in concentration profile for inclined values of Schmidt number. Further, dual nature of solutions exists only for certain range of shrinking parameter.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Umair Khan ◽  
A. Zaib ◽  
Ilyas Khan ◽  
Kottakkaran Sooppy Nisar

AbstractTitanium alloy nanoparticle has a variety of applications in the manufacturing of soap and plastic, microsensors, aerospace design material, nano-wires, optical filters, implantation of surgical, and many biological treatments. Therefore, this research article discussed the influence of nonlinear radiation on magneto Williamson fluid involving titanium alloy particles through a thin needle. The arising system of partial differential equations is exercised by the similarity transformations to get the dimensional form of ordinary differential equations. The dual nature of solutions is obtained by implementing bvp4c. The study of stability has been carried out to check which of the results are physically applicable and stable. Influences of pertinent constraints on the flow field are discussed with the help of graphical representations and the method validation is shown in Table 1. The results imply that more than one result is established when the moving needle and the free-stream travel in the reverse directions. Moreover, the magnetic parameter accelerates the severance of boundary-layer flow, while the separation delays in the absence of the nanoparticle. The velocity gradient of nanofluid decays owing to the Williamson parameter in both branches of the outcome, while the temperature shrinks in the first or upper branch solution (stable one) and uplifts in the second or lower branch solution (unstable one). The size of the needle decreases the velocity in the upper solution and accelerates in the lower solution. The patterns of streamlines are more complicated due to the reverse direction of the free stream and thin needle.


Author(s):  
Siti Nur Alwani Salleh ◽  
Norfifah Bachok ◽  
Fadzilah Md Ali ◽  
Norihan Md Arifin

Present work deals with the numerical study of flow due to a continuously moving slender needle in a hybrid nanoliquid. The mathematical model of this work is developed in terms of nonlinear partial differential equations. By adopting the relevant similarity transformations, these equations are reduced to a system of nonlinear ordinary differential equations. Afterward, the solution is determined computationally via a bvp4c solver in MATLAB software. The influences of nanoparticle volume fraction, needle thickness and velocity ratio parameter on the rate of heat transfer, coefficient of skin friction, velocity as well as temperature distributions are illustrated in graphical form to describe the important features of the solution. The multiple solutions seem to appear when the needle opposes the free stream flow. It is revealed from the study that the composite (hybrid) nanoparticles augment the heat transfer rate between the flow and the needle in a certain domain of the velocity ratio parameter. The analysis of stability has proved that the upper branch solution represents stable flow, whereas the lower branch solution represents unstable flow.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Natalia C. Roşca ◽  
Alin V. Roşca ◽  
Amin Jafarimoghaddam ◽  
Ioan Pop

Purpose The purpose of this paper is to study the laminar boundary layer cross flow and heat transfer on a rotational stagnation-point flow over either a stretching or shrinking porous wall submerged in hybrid nanofluids. The involved boundary layers are of stream-wise type with stretching/shrinking process along the surface. Design/methodology/approach Using appropriate similarity variables the partial differential equations are reduced to ordinary (similarity) differential equations. The reduced system of equations is solved analytically (by high-order perturbed field propagation for small to moderate stretching/shrinking parameter and low-order perturbation for large stretching/shrinking parameter) and numerically using the function bvp4c from MATLAB for different values of the governing parameters. Findings It was found that the basic similarity equations admit dual (upper and lower branch) solutions for both stretching/shrinking surfaces. Moreover, performing a linear stability analysis, it was confirmed that the upper branch solution is realistic (physically realizable), while the lower branch solution is not physically realizable in practice. These dual solutions will be studied in the present paper. Originality/value The authors believe that all numerical results are new and original and have not been published before for the present problem.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yu-Ming Chu ◽  
Umair Khan ◽  
A. Zaib ◽  
S. H. A. M. Shah ◽  
Marin Marin

The inspiration for this study is to explore the crucial impact of viscous dissipation (VISD) on magneto flow through a cross or secondary flow (CRF) in the way of streamwise. Utilizing the pertinent similarity method, the primary partial differential equations (PDEs) are changed into a highly nonlinear dimensional form of ordinary differential equations (ODEs). These dimensionless forms of ODEs are executed numerically by the aid of bvp4c solver. The impact of pertinent parameters such as the suction parameter, magnetic parameter, moving parameter, and viscous dissipation parameter is discussed with the help of plots. Dual solutions are obtained for certain values of a moving parameter. The velocities in the direction of streamwise, as well as cross-flow, decline in the upper branch solution, while the contrary impact is seen in the lower branch solution. However, the influence of suction on the velocities in both directions uplifts in the upper branch solution and shrinks in the lower branch solution. The analysis is also performed in terms of stability to inspect which solution is stable or unstable, and it is observed that the lower branch solution is unstable, whereas the upper branch one is stable.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1597
Author(s):  
Umair Khan ◽  
Anum Shafiq ◽  
Aurang Zaib ◽  
El-Sayed M. Sherif ◽  
Dumitru Baleanu

Cancer remains one of the world’s leading healthcare issues, and attempts continue not only to find new medicines but also to find better ways of distributing medications. It is harmful and lethal to most of its patients. The need to selectively deliver cytotoxic agents to cancer cells, to enhance protection and efficacy, has prompted the implementation of nanotechnology in medicine. The latest findings have found that gold nanomaterials can heal and conquer it because the material is studied such as gold (atomic number 79) which produces a large amount of heat and contribute to the therapy of malignant tumors. The purpose of the present study is to research the consequence of heat transport through blood flow (Casson model) that contains gold particles in a slippery shrinking/stretching curved surface. The mathematical modeling of Casson nanofluid containing gold nanomaterials towards the slippery curved shrinking/stretching surface is simplified by utilizing suitable transformation. Numerical dual solutions for the temperature and velocity fields are calculated by using bvp4c methodology in MATLAB. Impacts of related parameters are investigated in the temperature and velocity distribution. The results indicate that the suction parameter accelerates the velocity in the upper branch solution and decelerates it in the lower branch solution, while the temperature diminishes in both solutions. In addition, the Casson parameter shrinks the thickness of the velocity boundary-layer owing to rapid enhancement in the plastic dynamics’ viscosity. Moreover, the nanoparticle volume fraction accelerates the viscosity of blood as well as the thermal conductivity. Thus, findings suggested that gold nanomaterials are useful for drug moving and delivery mechanisms since the velocity boundary is regulated by the volume fraction parameter. Gold nanomaterials also raise the temperature field, so that cancer cells can be destroyed.


2020 ◽  
Vol 12 (7) ◽  
pp. 168781402093084
Author(s):  
M Ferdows ◽  
Faris Alzahrani ◽  
Shuyu Sun

This article presents a numerical study to investigate boundary-layer heat transfer fluid associated with a moving flat body in cooperation of variable plate and streaming-free velocity along the boundary surface in the laminar flow. The thermal conductivity is supposed to vary linearly with temperature. Similarity transformations are applied to render the governing partial differential equations for mass, momentum and energy into a system of ordinary differential equations to reveal the possible existence of dual solutions. MATLAB package has been used to solve the boundary value problem numerically. We present the effects of various parameters such as velocity ratio, thermal conductivity and variable viscosity on velocity and temperature distribution. The analysis of the results concerning Skin friction and Nusselt number near the wall is also presented. It is focused on the detection and description of the dual solutions. The study reveals that the undertaken problem admits dual solutions in particular range of values of different physical parameters. It can be seen that for the first branch solution, the fluid velocity decreases near the sheet, but it increases far away from the sheet for velocity ratio parameter, whereas the opposite effect is induced for second branch solution. Skin friction coefficient and rate of heat transfer increase due to increase in thermal conductivity parameter.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1070 ◽  
Author(s):  
Xiangling Li ◽  
Arif Ullah Khan ◽  
Muhammad Riaz Khan ◽  
Sohail Nadeem ◽  
Sami Ullah Khan

In the present work we consider a numerical solution for laminar, incompressible, and steady oblique stagnation point flow of Cu − water nanofluid over a stretching/shrinking sheet with mass suction S . We make use of the Cattaneo–Christov heat flux model to develop the equation of energy and investigate the qualities of surface heat transfer. The governing flow and energy equations are modified into the ordinary differential equations by similarity method for reasonable change. The subsequent ordinary differential equations are illuminated numerically through the function bvp4c in MATLAB. The impact of different flow parameters for example thermal relaxation parameter, suction parameter, stretching/shrinking parameter, free stream parameter, and nanoparticles volume fraction on the skin friction coefficient, local Nusselt number, and streamlines are contemplated and exposed through graphs. It turns out that the lower branch solution for the skin friction coefficient becomes singular in shrinking area, although the upper branch solution is smooth in both stretching and shrinking domain. For oblique stagnation-point flow the streamlines pattern are not symmetric, and reversed phenomenon are detected close to the shrinking surface. Also, we observed that the free stream parameter changes the direction of the oncoming flow and controls the obliqueness of the flow. The existing work mostly includes heat and mass transfer as a mechanism for improving the heat transfer rate, which is the main objective of the authors.


2018 ◽  
Vol 28 (9) ◽  
pp. 2089-2110 ◽  
Author(s):  
Ioan Pop ◽  
Natalia C. Roşca ◽  
Alin V. Roşca

PurposeThe purpose of this paper is to study the effects of MHD, suction, second-order slip and melting on the stagnation-point and heat transfer of a nanofluid past a stretching/shrinking sheet.Design/methodology/approachUsing appropriate variables, the governing partial differential equations were transformed into ordinary (similarity) differential equations, which are then solved numerically using the function bvp4c from Matlab.FindingsIt is found that dual (upper and lower branch) solutions exist for some values of the governing parameters. From the stability analysis, it is found that the upper branch solution is stable, while the lower branch solution is unstable. The sample velocity, temperature and concentration profiles along both solution branches are graphically presented.Originality/valueThe results of the paper are new and original with many practical applications of nanofluids in the modern industry.


2018 ◽  
Vol 8 (7) ◽  
pp. 1128 ◽  
Author(s):  
Anuar Jamaludin ◽  
Roslinda Nazar ◽  
Ioan Pop

In this paper, the steady three-dimensional magnetohydrodynamic (MHD) mixed convection flow of nanofluids over a permeable vertical stretching/shrinking sheet with slip conditions is investigated in a numerical manner. As such, two types of nanofluids, Cu-water and Ag-water, had been considered. A similarity transformation was employed to reduce the governing equations to ordinary differential equations, which were then solved numerically using the MATLAB (Matlab R2015a, MathWorks, Natick, MA, USA, 1984) programme bvp4c. The numerical solutions derived from the ordinary differential equations subjected to the associated boundary conditions, were obtained to represent the values of the mixed convection parameter. Dual (upper and lower branch) solutions were discovered in the opposing flow region of the mixed convection parameter. A stability analysis was carried out to prove that the upper branch solution was indeed stable, while the lower branch solution was unstable. The significant effects of the governing parameters on the reduced skin friction coefficients, the reduced local Nusselt number, as well as the velocity and temperature profiles, were presented graphically and discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document