High-selectivity UWB bandpass filter with a notched band using stub-loaded multi-mode resonator

2016 ◽  
Vol 70 (12) ◽  
pp. 1617-1621 ◽  
Author(s):  
Tengfei Yan ◽  
Di Lu ◽  
Xiao-Hong Tang ◽  
Jun Xiang
Frequenz ◽  
2018 ◽  
Vol 72 (5-6) ◽  
pp. 237-243
Author(s):  
Xing-Bing Ma ◽  
Ting Jiang

AbstractA wideband bandpass filter (BPF) with an adjustable notched-band and high selectivity is proposed. The proposed BPF consists of a multi-mode resonator (MMR), twoλ/2 resonators, and I/O feed lines with 50 ohm characteristic impedance. The MMR, connected as a whole by a wide stub, is composed of one I-shaped resonator and two open-loop resonators. Tightly coupling is built between MMR andλ/2 resonators. I/O feed lines are directly connected with twoλ/2 resonators, respectively. Due to the use of tapped-line coupling, one transmission zero (TZ) is formed near low-edge of aim passband. High-edge of passband with one attendant TZ can be tuned to desired location by adjusting bottom-side position of used wide stub or bottom-side length of I-shaped resonator in MMR. The top-side length of I-shaped resonator is applied to improve upper stopband performance and shift undesired resonant mode of MMR near high-edge of aim passband to proper frequency point. The notched-band in aim passband is dominated by top-side position of wide stub in MMR. Good agreement is observed between simulated and measured results.


Author(s):  
Mingming Gao ◽  
Keda Xu ◽  
Jingchang Nan ◽  
Li Wang

Background: Aiming at solving the problems of large design size and insufficient number of notched band for traditional ultra-wideband (UWB) filters, a planar compact microstrip UWB bandpass filter (BPF) with quad notched bands and good selectivity is proposed using a modified multiple-mode resonator (MMR) and defected ground structure (DGS). Methods: The MMR consists of a stepped impedance stub above and two pairs of open-circuited stubs on both sides, which c an generate the passband and double notched bands of UWB filter, the other two notched bands are obtained by DGS. Results: The UWB filter with quad notched bands respectively centered at 3.9GHz, 5.7GHz, 7.9GHz, and 9.8GHz is fabricated and measured. Conclusion: The measured results are basically consistent with the simulated results, which proves the correctness and practicability of the UWB filter.


Author(s):  
Gaurav Saxena ◽  
Priyanka Jain ◽  
Y. K. Awasthi

Abstract In this paper, a ultra-wideband (UWB) bandpass filter with stopband characteristics is presented using a multi-mode resonator (MMR) technique. An MMR is formed by loading three dumbbell-shaped (Mickey and circular) shunt stubs placed in the center and two symmetrical locations from ports, respectively. Three circular and arrowhead defected ground structures on the ground plane are introduced to achieve UWB bandwidth with a better roll-off rate. The proposed filter exhibits stopband characteristics from 10.8 to 20 GHz with a 0.4 dB return loss. The group delay and roll-off rate of the designed filter are <0.30 ns in the passband and 16 dB/GHz at lower and higher cut-off frequencies, respectively. The dimension of the filter is 0.74λg × 0.67λg mm2 and was fabricated on a cost-effective substrate. All simulated results are verified through the experimental results.


2020 ◽  
Vol 71 (6) ◽  
pp. 433-435
Author(s):  
Shan Shan Gao ◽  
Jia-Lin Li ◽  
Zhe Lin Zhu ◽  
Jia Li Xu ◽  
Yong Xin Zhao

AbstractAn improved feedline configuration for dual-mode resonator filter is investigated in this paper. Based on the introduced topology, a dual-mode dual-band bandpass filter with center frequencies of 1.8 and 2.4 GHz is optimally designed, fabricated and tested. The introduced dual-band bandpass filter has simple structure and enables high selectivity to be realized due to two pairs of transmission zeros located near to the lower and upper passband, respectively. Both measured and simulated performances are presented with good consistency.


2019 ◽  
Vol 13 (12) ◽  
pp. 2013-2019
Author(s):  
Xiaojun Bi ◽  
Luhua Wang ◽  
Qiang Ma ◽  
Baoquan Hu ◽  
Qinfen Xu

2015 ◽  
Vol 8 (7) ◽  
pp. 1031-1035 ◽  
Author(s):  
Ting Zhang ◽  
Fei Xiao ◽  
Xiaohong Tang ◽  
Lei Guo

In this paper, a novel multi-mode resonator is presented, which is formed by cascading several open-circuited transmission line sections with a coupled-line section. Owing to its symmetry, even- and odd-mode analysis methods are applied to analyze its resonance characteristic. Based on this resonator, a microstrip ultra-wide bandwidth (UWB) bandpass filter is designed, fabricated, and measured. The simulated and measured results show that its bandwidth can cover the desired UWB. Return loss in passband is better than −14 dB. This filter is featured by good selectivity and wide stopband. Stopband suppression as low as −40 dB can be achieved within frequency range from 12 to 16 GHz.


Sign in / Sign up

Export Citation Format

Share Document