Dual band rectangular patch antenna array with defected ground structure for ITS application

Author(s):  
Nand Kishore ◽  
Gaurav Upadhyay ◽  
Vijay Shanker Tripathi ◽  
Arun Prakash
2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


Author(s):  
Nur Azura Shamsudin ◽  
◽  
Shaharil Mohd Shah ◽  

This work presents the performance of a miniaturized dual-band dual-mode microstrip patch antenna with Defected Ground Structure (DGS) at 2.45 GHz and 5.8 GHz on the stacked substrate configuration in the order of FR-4 – PDMS- FR-4. The antenna offers a promising solution for wearable applications in the ISM bands. The first substrate is a flexible Flame Retardant 4 (FR-4) and the other substrate is a highly flexible Polydimethyl Siloxane (PDMS). The size of the antenna was reduced from 50 × 50 mm2 to 30 × 30 mm2, by introducing DGS on the ground plane. A single U-slot on the rectangular radiating patch was introduced to produce the upper resonant frequency of 5.8 GHz while the existing square patch is to generate the lower resonant frequency of 2.45 GHz. The simulations on the dual-band dual-mode microstrip patch antenna shows the reflection coefficient, S11 at 2.45 GHz is -17.848 dB with a bandwidth of 278.8 MHz and -13.779 dB with a bandwidth of 273 MHz at 5.8 GHz. A unidirectional radiation pattern observed in the E-plane shows that the antenna could be applied for off-body communication while an omnidirectional radiation pattern in the H-plane showed that the antenna can be used for on-body communication. Bending investigation were performed for the antenna over a vacuum cylinder with varying diameters of 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm and 120 mm in the CST MWS® software. From the graph of reflection coefficients, the performance of the antenna were not affected in bending condition. The SAR simulations showed that the SAR limits obey the guidelines as stipulated by the Federal Communication Commission (FCC) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) for 1 mW of input power. The 2.45 GHz SAR limit for 1 g of human tissue is 0.09007 W/kg (FCC standard: < 1.6 W/kg) while for 10 g is 0.01867 W/kg (ICNIRP standard: < 2 W/kg). For 5.8 GHz, the SAR limit for 1 g of human tissue is 0.115 W/kg and for 10 g is 0.03517 W/kg. Based on the performance of the antenna in bending condition and the SAR limits, it is safe to conclude that the antenna can be used for wearable applications at 2.45 GHz and 5.8 GHz of the ISM bands.


2018 ◽  
Vol 7 (5) ◽  
pp. 118-123 ◽  
Author(s):  
P. Pathak ◽  
P. K. Singhal

This paper reports a new design of broadband monopole patch antenna. The proposed antenna possess corner truncated rectangular patch with slits and defected ground structure, these modifications considerably improves the impedance bandwidth to 41.29% over a wideband (5.1–7.59 GHz). The design is appropriate for wireless communication including WLAN IEEE 802.11 g/a (5.15–5.35 GHz and 5.725–5.825 GHz) and C Band (4–8 GHz) applications. An antenna prototype is fabricated using FR-4 with an electrical permittivity of 4.4. Experimental and numerical simulations of antenna’s radiation characteristic are also reported and exhibits good concurrence.


Author(s):  
Ketavath Kumar Naik ◽  
Ravi Kumar Palla ◽  
Sriram Sandhya Rani ◽  
Dattatreya Gopi

Monopole L-shaped slits are embedded on rectangular patch antenna is designed for S-band applications. The proposed antenna is a square patch radiator with four L-shaped slits are presented. The proposed antenna radiates at 3GHz resonance frequency with bandwidth of 1.9GHz and -26.4dB return loss. The impedance bandwidth is enhanced 62.7% with proposed antenna model. The proposed L-shaped slit patch antenna is small in size and compact. The radiation pattern is presented in the results and it works at S-band applications.


Sign in / Sign up

Export Citation Format

Share Document