Simulating land use changes, sediment yields, and pesticide use in the Upper Paraguay River Basin: Implications for conservation of the Pantanal wetland

2021 ◽  
Vol 314 ◽  
pp. 107405
Author(s):  
Fabio de Oliveira Roque ◽  
Angélica Guerra ◽  
Matthew Johnson ◽  
Carlos Padovani ◽  
Juliano Corbi ◽  
...  
2020 ◽  
Vol 8 ◽  
Author(s):  
Pedro Ely ◽  
Ibraim Fantin-Cruz ◽  
Hans M. Tritico ◽  
Pierre Girard ◽  
David Kaplan

Tropical river basins have experienced dramatically increased hydropower development over the last 20 years. These alterations have the potential to cause changes in hydrologic and ecologic systems. One heavily impacted system is the Upper Paraguay River Basin, which feeds the Pantanal wetland. The Pantanal is a Ramsar Heritage site and is one of the world's largest freshwater wetlands. Over the past 20 years, the number of hydropower facilities in the Upper Paraguay River Basin has more than doubled. This paper uses the Indicators of Hydrologic Alteration (IHA) method to assess the impact of 24 of these dams on the hydrologic regime over 20 years (10 years before and 10 years after dam installation) and proposes a method to disentangle the effects of dams from other drivers of hydrologic change using undammed “control” rivers. While most of these dams are small, run-of-the-river systems, each dam significantly altered at least one of the 33 hydrologic indicators assessed. Across all studied dams, 88 of the 256 calculated indicators changed significantly, causing changes of 5–40%, compared to undammed reaches. These changes were most common in indicators that quantify the frequency and duration of high and low pulses, along with those for the rate and frequency of hydrologic changes. Importantly, the flow regime in several undammed reaches also showed significant alterations, likely due to climate and land-use changes, supporting the need for measurements in representative control systems when attributing causes to observed change. Basin-wide hydrologic changes (in both dammed and undammed rivers) have the potential to fundamentally alter the hydrology, sediment patterns, and ecosystem of the Pantanal wetland. The proposed refinement of the IHA methods reveals crucial differences between dam-induced alteration and those assigned to other drivers of change; these need to be better understood for more efficient management of current hydropower plants or the implementation of future dams.


2016 ◽  
Vol 80 ◽  
pp. 113-123 ◽  
Author(s):  
Nicolas Urruty ◽  
Tanguy Deveaud ◽  
Hervé Guyomard ◽  
Jean Boiffin

Author(s):  
Xin Zhang ◽  
Lin Zhou ◽  
Yuqi Liu

Changes in landscape patterns in a river basin play a crucial role in the change on load of non-point source pollution. The spatial distribution of various land use types affects the transmission of non-point source pollutants on the basis of source-sink theory in landscape ecology. Jiulong River basin in southeast of China was selected as the study area in this paper. Aiming to analyze the correlation between changing landscape patterns and load of non-point source pollution in this area, traditional landscape metrics and the improved location-weighted landscape contrast index based on the minimum hydrological response unit (HRULCI) were applied in this study, in combination with remote sensing and geographic information system (GIS) technique. The results of the landscape metrics showed the enhanced fragmentation extent and the decreasing polymerization degree of the overall landscape in the watershed. High values of HRULCI were concentrated in cultivated land, while low HRULCI values mostly appeared in forestland, indicating that cultivated land substantially enhanced non-point source pollution, while forestland inhibited the pollution process.


10.5109/27370 ◽  
2013 ◽  
Vol 58 (2) ◽  
pp. 377-387
Author(s):  
Yanna Xiong ◽  
Guoqiang Wang ◽  
Yanguo Teng ◽  
Kyoichi Otsuki

2008 ◽  
Vol 2 (No. 3) ◽  
pp. 77-84
Author(s):  
R. Pavelková Chmelová ◽  
B. Šarapatka ◽  
M. Dumbrovský ◽  
P. Pavka

In this paper, the authors summarise the land use changes in the upper reaches of the Krupá river catchment, which is a left tributary of the Morava River. During last 70 years, the catchment was exposed to many important historical events that have been inscribed in the physique of the landscape in a very interesting way. The land use changes, which occurred during the last eight decades in the subcatchment of the Krupá river basin, have been analysed using historical maps, cadastral maps, and both historical and recent aerial photographs of the area. The next step is to estimate, through the CN method and DesQ hydrological model, how the runoff processes in the Krupá River catchment could be influenced by the land use changes.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Carlos Javier Villa Alvarado ◽  
Eladio Delgadillo-Ruiz ◽  
Carlos Alberto Mastachi-Loza ◽  
Enrique González-Sosa ◽  
Ramos Salinas Norma Maricela

Today the knowledge of physical parameters of a basin is essential to know adequately the rainfall-runoff process; it is well known that the specific characteristics of each basin such as temperature, geographical location, and elevation above sea level affect the maximum discharge and the basin time response. In this paper a physically based model has been applied, to analyze water balance by evaluating the volume rainfall-runoff using SHETRAN and hydrometric data measurements in 2003. The results have been compared with five ETp different methodologies in the Querétaro river basin in central Mexico. With these results the main effort of the authorities should be directed to better control of land-use changes and to working permanently in the analysis of the related parameters, which will have a similar behavior to changes currently being introduced and presented in observed values in this basin. This methodology can be a strong base for sustainable water management in a basin, the prognosis and effect of land-use changes, and availability of water and also can be used to determine application of known basin parameters, basically depending on land-use, land-use changes, and climatological database to determine the water balance in a basin.


Sign in / Sign up

Export Citation Format

Share Document