Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations

2019 ◽  
Vol 265 ◽  
pp. 280-294 ◽  
Author(s):  
Kai Yang ◽  
Chenghai Wang
Finisterra ◽  
2012 ◽  
Vol 44 (87) ◽  
Author(s):  
Javier Santos-González ◽  
Rosa González-Gutiérrez ◽  
Amélia Gómes-Villar ◽  
José Redondo-Vega

Ground temperature data obtained from 2002 to 2007 in sites near relict rock glaciers in the cantabrian mountains, at altitudes between 1500 and 2300 meters is analysed. Snow cover lasted between 3 and 9 months and had a strong influence on the thermal regime. When snow was present, the soil was normally frozen in the first 5 to 10 cm, but daily freeze-thaw cycles were rare. In well developed soils located at sunny faces frost penetration rarely reached more than 10 cm. on the contrary in shady and windy faces with scarce snow cover, frost penetration reached, at least, 40 cm. In persistent snow patches the temperature was stable at 0 ºc, even in relict rock glaciers, where subnival winter air fluxes appear to have been very rare.


2021 ◽  
Author(s):  
Andreas Kellerer-Pirklbauer ◽  
Gerhard Karl Lieb

<p>Ground temperatures in alpine environments are severely influenced by slope orientation (aspect), slope inclination, local topoclimatic conditions, and thermal properties of the rock material. Small differences in one of these factors may substantially impact the ground thermal regime, weathering by freeze-thaw action or the occurrence of permafrost. To improve the understanding of differences, variations, and ranges of ground temperatures at single mountain summits, we studied the ground thermal conditions at a triangle-shaped (plan view), moderately steep pyramidal peak over a two-year period (2018-2020).</p><p>We installed 18 monitoring sites with 23 sensors near the summit of Innerer Knorrkogel (2882m asl), in summer 2018 with one- and multi-channel datalogger (Geoprecision). All three mountain ridges (east-, northwest-, and southwest-facing) and flanks (northeast-, west-, and south-facing) were instrumented with one-channel dataloggers at two different elevations (2840 and 2860m asl) at each ridge/flank to monitor ground surface temperatures. Three bedrock temperature monitoring sites with shallow boreholes (40cm) equipped with three sensors per site at each of the three mountain flanks (2870m asl) were established. Additionally, two ground surface temperature monitoring sites were installed at the summit.</p><p>Results show remarkable differences in mean annual ground temperatures (MAGT) between the 23 different sensors and the two years despite the small spatial extent (0.023 km²) and elevation differences (46m). Intersite variability at the entire mountain pyramid was 3.74°C in 2018/19 (mean MAGT: -0.40°C; minimum: -1.78°C; maximum: 1.96°C;) and 3.27°C in 2019/20 (mean MAGT: 0.08°C; minimum: -1.54°C; maximum: 1,73°C;). Minimum was in both years at the northeast-facing flank, maximum at the south-facing flank. In all but three sites, the second monitoring year was warmer than the first one (mean +0.48°C) related to atmospheric differences and site-specific snow conditions. The comparison of the MAGT-values of the two years (MAGT-2018/19 minus MAGT-2019/20) revealed large thermal inhomogeneities in the mountain summit ranging from +0.65° (2018/19 warmer than 2019/20) to -1.76°C (2018/19 colder than 2019/20) at identical sensors. Temperature ranges at the three different aspects but at equal elevations were 1.7-2.2°C at ridges and 1.8-3.7°C at flanks for single years. The higher temperature range for flank-sites is related to seasonal snow cover effects combined with higher radiation at sun-exposed sites. Although the ground temperature was substantially higher in the second year, the snow cover difference between the two years was variable. Some sites experienced longer snow cover periods in the second year 2019/20 (up to +85 days) whereas at other sites the opposite was observed (up to -85 days). Other frost weathering-related indicators (diurnal freeze-thaw cycles, frost-cracking window) show also large intersite and interannual differences.</p><p>Our study shows that the thermal regime at a triangle-shaped moderately steep pyramidal peak is very heterogeneous between different aspects and landforms (ridge/flank/summit) and between two monitoring years confirming earlier monitoring and modelling results. Due to high intersite and interannual variabilities, temperature-related processes such as frost-weathering can vary largely between neighbouring sites. Our study highlights the need for systematic and long-term ground temperature monitoring in alpine terrain to improve the understanding of small- to medium-scale temperature variabilities.</p>


2017 ◽  
Vol 43 (1) ◽  
pp. 229-241 ◽  
Author(s):  
Cameron Scott Watson ◽  
Duncan J. Quincey ◽  
Jonathan L. Carrivick ◽  
Mark W. Smith ◽  
Ann V. Rowan ◽  
...  
Keyword(s):  

2013 ◽  
Vol 17 (10) ◽  
pp. 4283-4296 ◽  
Author(s):  
X. Chen ◽  
D. Wang

Abstract. Hydrograph recession during dry periods has been used to construct water storage–discharge relationships and to quantify storage dynamics and evaporation when streamflow data is available. However, variable hydrologic connectivity among hillslope–riparian–stream zones may affect the lumped storage–discharge relationship, and as a result, affect the estimation of evaporation and storage change. Given observations of rainfall and runoff, and remote-sensing-based observations of evaporation, the ratio (α) between estimated daily evaporation from recession analysis and observed evaporation, and the ratio (β) between estimated contributing storage and total watershed storage are computed for 9 watersheds located in different climate regions. Both evaporation and storage change estimation from recession analysis are underestimated due to the effect of partial contributing storage, particularly when the discharge is low. It was found that the values of α decrease significantly during individual recession events, while the values of β are relatively stable during a recession event. The values of β are negatively correlated with the water table depth and vary significantly among recession events. The partial contributing storage effect is one possible cause for the multi-valued storage–discharge relationship.


2013 ◽  
Vol 10 (5) ◽  
pp. 5767-5798
Author(s):  
X. Chen ◽  
D. Wang

Abstract. Hydrograph recession during dry periods has been used to construct water storage–discharge relationship, and to quantify storage dynamics and evaporation when streamflow data is available. However, variable hydrologic connectivity among hillslope-riparian-stream zones may affect the lumped storage–discharge relationship, and as a result, affect the estimation of evaporation and storage change. Given observations of rainfall and runoff, and remote sensing-based observation of evaporation, the ratio (α) between estimated daily evaporation from recession analysis and observed evaporation, and the ratio (β) between estimated contributing storage and total watershed storage are computed for 9 watersheds located in different climate regions. Both evaporation and storage change estimation from recession analysis are underestimated due to the effect of partial contributing storage, particularly when the discharge is low. It was found that the values of α decrease significantly during individual recession events, while the values of β are relatively stable during a recession event. The values of β are negatively correlated with the water table depth, and vary significantly among recession events. The partial contributing storage effect is one possible cause for the multi-valued storage–discharge relationship.


2016 ◽  
Author(s):  
Gonçalo Vieira ◽  
Carla Mora ◽  
Ali Faleh

Abstract. Relict and present-day periglacial activity have been reported in the literature for the upper reaches of the High Atlas mountains, the highest range in North Africa (Djebel Toubkal – 4,167 m a.s.l.). Lobate features in the Irhzer Ikbi South at 3,800 m a.s.l. have been previously interpreted as an active rock glacier, but no measurements of ground or air temperatures are known to exist for the area. In order to assess on the possible presence of permafrost, analyse data from June 2015 to June 2016 from two air temperature sites at 2,370 and 3,200 m a.s.l., and from four ground surface temperature (GST) sites at 3,200, 3,815, 3,980 and 4,160 m a.s.l. allowing to characterize conditions along an altitudinal gradient along the Oued Ihghyghaye valley to the summit of the Djebel Toubkal. GST were collected at 1-hour intervals and the presence of snow cover at the monitoring sites was validated using Landsat-8 and Sentinel-2 imagery. Two field visits allowed for logger installation and collection and for assessing the geomorphological features in the area. The results show that snow plays a major role on the thermal regime of the shallow ground, inducing important spatial variability. The lowest site at 3,210 m showed a regime characterized by frequent freeze-thaw cycles during the cold season but with a small number of days of snow. When snow sets, the ground remains isothermal at 0 °C and the thermal regime indicates the absence of permafrost. The highest sites at 3,980 and 4,160 m a.s.l. showed very frequent freeze-thaw cycles and a small influence of the snow cover on GST, reflecting the lack of snow accumulation due to the their wind-exposed settings in a ridge and in the summit plateau. The site located at 3,815 m in the Irhzer Ikbi South valley showed a stable thermal regime from December to March with GST varying from −4.5 to −6 °C, under a continuous snow cover. The site's location in a concave setting favours snow accumulation and lower incoming solar radiation due to the effect of a southwards ridge, favouring the maintenance of a thick snow pack. The stable and low GST are interpreted as a strong indicator of the probable presence of permafrost at this site, an interpretation which is supported by the presence of lobate and arcuate forms in the talus deposits. These results are still a first approach and observations through geophysics and boreholes are foreseen. This is the first time that probable permafrost is reported from temperature observations in the mountains of North Africa.


Sign in / Sign up

Export Citation Format

Share Document